Preparing antiviral defenses
Antiviral drugs are an important tool in the battle against COVID-19. Both remdesivir and molnupiravir, which target the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) polymerase, were first developed against other RNA viruses. This highlights the importance of broad-spectrum antivirals that can be rapidly deployed against related emerging pathogens. Sourimant
et al
. used respiratory syncytial virus (RSV) as a primary indication in identifying further drugs that target the polymerase enzyme of RNA viruses. The authors explored derivatives of molnupiravir and identified 4′ fluorouridine (EIDD-2749) as an inhibitor of the polymerase of RSV and SARS-CoV-2. This drug can be delivered orally and was effective against RSV in mice and SARS-CoV-2 in ferrets. —VV
Remdesivir is an antiviral approved for COVID-19 treatment, but its wider use is limited by intravenous delivery. An orally bioavailable remdesivir analog may boost therapeutic benefit by facilitating early administration to non-hospitalized patients. This study characterizes the anti-SARS-CoV-2 efficacy of GS-621763, an oral prodrug of remdesivir parent nucleoside GS-441524. Both GS-621763 and GS-441524 inhibit SARS-CoV-2, including variants of concern (VOC) in cell culture and human airway epithelium organoids. Oral GS-621763 is efficiently converted to plasma metabolite GS-441524, and in lungs to the triphosphate metabolite identical to that generated by remdesivir, demonstrating a consistent mechanism of activity. Twice-daily oral administration of 10 mg/kg GS-621763 reduces SARS-CoV-2 burden to near-undetectable levels in ferrets. When dosed therapeutically against VOC P.1 gamma γ, oral GS-621763 blocks virus replication and prevents transmission to untreated contact animals. These results demonstrate therapeutic efficacy of a much-needed orally bioavailable analog of remdesivir in a relevant animal model of SARS-CoV-2 infection.
SARS-CoV-2 variants of concern (VOC) have triggered infection waves. Oral antivirals such as molnupiravir promise to improve disease management, but efficacy against VOC delta was questioned and potency against omicron is unknown. This study evaluates molnupiravir against VOC in human airway epithelium organoids, ferrets, and a lethal Roborovski dwarf hamster model of severe COVID-19-like lung injury. VOC were equally inhibited by molnupiravir in cells and organoids. Treatment reduced shedding in ferrets and prevented transmission. Pathogenicity in dwarf hamsters was VOC-dependent and highest for delta, gamma, and omicron. All molnupiravir-treated dwarf hamsters survived, showing reduction in lung virus load from one (delta) to four (gamma) orders of magnitude. Treatment effect size varied in individual dwarf hamsters infected with omicron and was significant in males, but not females. The dwarf hamster model recapitulates mixed efficacy of molnupiravir in human trials and alerts that benefit must be reassessed in vivo as VOC evolve.
The COVID-19 pandemic is having a catastrophic impact on human health. Widespread community transmission has triggered stringent distancing measures with severe socioeconomic consequences. Gaining control of the pandemic will depend on interruption of transmission chains until protective herd immunity arises. Ferrets and related members of the weasel genus transmit SARS-CoV-2 efficiently with minimal clinical signs, resembling spread in the young-adult population. We previously reported an orally efficacious nucleoside analog inhibitor of influenza viruses, EIDD-2801 (or MK-4482), that was repurposed against SARS-CoV-2 and is in phase II/III clinical trials. Employing the ferret model, we demonstrate in this study high SARS-CoV-2 burden in nasal tissues and secretions that coincides with efficient direct-contact transmission. Therapeutic treatment of infected animals with twice-daily MK-4482/EIDD-2801 significantly reduced upper respiratory tract SARS-CoV-2 load and completely suppressed spread to untreated contact animals. This study identifies oral MK-4482/EIDD-2801 as a promising antiviral countermeasure to break SARS-CoV-2 community transmission chains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.