We present an experimental protocol for fast determination of hydrate stability in porous media for a range of pressure and temperature (P, T) conditions. Using a lab-on-a-chip approach, we gain direct optical access to dynamic pore-scale hydrate formation and dissociation events to study the hydrate phase equilibria in sediments. Optical pore-scale observations of phase behavior reproduce the theoretical hydrate stability line with methane gas and distilled water, and demonstrate the accuracy of the new method. The procedure is applicable for any kind of hydrate transitions in sediments, and may be used to map gas hydrate stability zones in nature.
Summary This study reviews how production of methane from hydrates can be triggered by dissociation of the hydrate structure. Techniques leading to dissociation of hydrates are summarized by pressure depletion, thermal stimulation, and injection of inhibitors. Depressurization is considered to be the most-cost-effective method and is easily implemented in gas reservoirs with overlying hydrate layers. Examples and status of pressure-depletion tests on field scale will be reviewed. In hydrate reservoirs not adjacent to gas zones, the success of pressure depletion is dependent on sufficient permeability to allow for pressure perturbations to reach within the hydrate reservoir and to allow for flow of dissociated gas. This effect has been investigated in this paper by performing controlled pressure depletions on hydrate-filled sandstone cores. Dissociation pressures at given temperatures have been quantified as well as recovery of methane as a function of pressure decrements lower than dissociation pressure. Hydrate dissociation was found to take place over a range of pressure values because of salinity changes in the water phase. A 2D porous silicon-wafer micromodel has been used to gain insight into the mechanisms of hydrate dissociation. Direct visualization of hydrate melting induced by both depressurization and heating is reported from pores replicating authentic sandstone pores. Thermal stimulation led to a more-uniform hydrate melting compared with pressure depletion, and depressurization was most effective when the hydrate was in direct contact with gas bubbles.
The voluminous amounts of hydrates found in nature are distributed across all continents and pose a huge possibility for future energy harvest. In fact, the total amount of energy stored in hydrates is predicted to be in the same range as conventional fossil fuels combined. Successful exploitation of this energy supply will serve as a vast and relatively clean source of fossil fuel for the remaining of the fossil era. Natural gas hydrates consist of guest molecules encapsulated inside cavities formed by hydrogen-bonded water molecules. The origin of the encaged gas may be biogenic or thermogenic with methane being the most common hydrate former in the earth. Methane hydrates are stabilized at elevated pressures and low temperatures and are mainly located in onshore permafrost regions and in marine sediments offshore.This paper review how production of methane from hydrates can be triggered by dissociation of the hydrate structure. Techniques leading to dissociation of hydrates are summarized by pressure depletion, thermal stimulation and injection of inhibitors. Depressurization is considered to be the most costeffective method and is easily implemented in gas reservoirs with overlying hydrate layers. Examples and status of pressure depletion tests on field scale will be reviewed. In hydrate reservoirs not adjacent to gas zones, the success of pressure depletion is dependent on sufficient permeability to allow for pressure perturbations to reach within the hydrate reservoir and to allow for flow of dissociated gas. This effect has been investigated in this paper by performing controlled pressure depletions on hydrate-filled sandstone cores. Dissociation pressures at given temperatures have been quantified as well as recovery of methane as function of pressure-decrements below dissociation pressure. A 2D porous silicon wafer micromodel was used to gain insight on the mechanisms of hydrate dissociation. Direct visualization of hydrate melting induced by both depressurization and heating is reported from pores replicating authentic sandstone pores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.