The water-gas shift (WGS) is one of the major steps for H2 production from gaseous, liquid and solid hydrocarbons. It is used to produce hydrogen for ammonia synthesis, to adjust the hydrogen-to-carbon monoxide ratio of synthesis gas, to detoxify gases. The WGS reactor is widely used as a part of fuel processors which produce hydrogen-rich stream from hydrocarbon-based fuels in a multi-step process. The WGS unit is placed downstream the fuel reformer in order to increase overall efficiency of hydrogen production and to lower CO content in reformate. Fuel processors stand for considerable option for fuelling PEM fuel cells for both portable and stationary applications. Micro-structured reactors are used with benefits of process miniaturization, intensification and higher heat and mass transfer rates compared with conventional reactors. Micro-structured reactor systems are essential for processes where potential for considerable heat transfer exists as well as for kinetic studies of highly exothermic reactions at near-isothermal conditions. Modelling and simulation of a microchannel reactor for the WGS reaction is presented. The mathematical models concern a single reaction channel with porous layer of catalyst deposited on the metallic wall of the microstructure unit. Simplified one-phase and more sophisticated two-phase models, with separate mass and energy balances for gas and solid phase at different levels of complexity, were developed. The models were implemented into gPROMS process modelling software. The models were used for an estimation of parameters in a kinetic expression using experimental data obtained with a new WGS catalyst. The simulations provide detailed information about the composition and temperature distribution in gas phase and solid catalyst inside the channel.
Abstract. In this article, we propose a software solution to study HMI of electric and hybrid electric vehicles in vehicle simulators. We will start with the description of a development process of a physical model for HEV simulation in IGNITE software and equation-based language Modelica. A short introduction to the language, its possibilities, and explanation, why it is more suitable for the development of such models (vehicle powertrain), are presented in the first part of the article. A fusion mechanism of the physical engine with the model by means of FMU (Functional Mock-up Interface)[1] is also described in this part The second part is dedicated to the description of the model constructed in third party software IGNITE. This model has a detailed calculation of energy consumption and energy flow based on the selected control strategy. The last part of the article describes a possible experiment methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.