AimsThe aim of this study was to investigate the effect of contact-to-balloon time on mortality in ST-segment elevation myocardial infarction (STEMI) patients with and without haemodynamic instability.Methods and resultsUsing data from the prospective, multicentre Feedback Intervention and Treatment Times in ST-Elevation Myocardial Infarction (FITT-STEMI) trial, we assessed the prognostic relevance of first medical contact-to-balloon time in n = 12 675 STEMI patients who used emergency medical service transportation and were treated with primary percutaneous coronary intervention (PCI). Patients were stratified by cardiogenic shock (CS) and out-of-hospital cardiac arrest (OHCA). For patients treated within 60 to 180 min from the first medical contact, we found a nearly linear relationship between contact-to-balloon times and mortality in all four STEMI groups. In CS patients with no OHCA, every 10-min treatment delay resulted in 3.31 additional deaths in 100 PCI-treated patients. This treatment delay-related increase in mortality was significantly higher as compared to the two groups of OHCA patients with shock (2.09) and without shock (1.34), as well as to haemodynamically stable patients (0.34, P < 0.0001).ConclusionsIn patients with CS, the time elapsing from the first medical contact to primary PCI is a strong predictor of an adverse outcome. This patient group benefitted most from immediate PCI treatment, hence special efforts to shorten contact-to-balloon time should be applied in particular to these high-risk STEMI patients.Clinical Trial RegistrationNCT00794001.
Background: Left ventricular hypertrophy (LVH) is a hallmark of chronic pressure or volume overload of the left ventricle and is associated with risk of cardiovascular morbidity and mortality. The purpose was to evaluate different electrocardiographic criteria for LVH as determined by cardiovascular magnetic resonance (CMR). Additionally, the effects of concentric and eccentric LVH on depolarization and repolarization were assessed.
Visualisation and planimetry of the ARO in patients with AR are feasible by MRI. There is a strong correlation of ARO with RgV and RgF assessed by PVM and with invasively graded AR at catheterisation. Therefore, determination of ARO by MRI is a new non-invasive measure for assessing the severity of AR.
MRI allows visualization and planimetry of the aortic valve orifice and accurate determination of left ventricular muscle mass, which are important parameters in aortic stenosis. In contrast to invasive methods, MRI planimetry of the aortic valve area (AVA) is flow independent. AVA is usually indexed to body surface area. Left ventricular muscle mass is dependent on weight and height in healthy individuals. We studied AVA, left ventricular muscle mass (LMM) and ejection fraction (EF) in 100 healthy individuals and in patients with symptomatic aortic valve stenosis (AS). All were examined by MRI (1.5 Tesla Siemens Sonate) and the AVA was visualized in segmented 2D flash sequences and planimetry of the performed AVA was manually. The aortic valve area in healthy individuals was 3.9+/-0.7 cm(2), and the LMM was 99+/-27 g. In a correlation analysis, the strongest correlation of AVA was to height (r=0.75, p<0.001) and for LMM to weight (r=0.64, p<0.001). In a multiple regression analysis, the expected AVA for healthy subjects can be predicted using body height: AVA=-2.64+0.04 x(height in cm) -0.47 x w (w=0 for man, w=1 for female).In patients with aortic valve stenosis, AVA was 1.0+/-0.35 cm(2), in correlation to cath lab r=0.72, and LMM was 172+/-56 g. We compared the AS patients results with the data of the healthy subjects, where the reduction of the AVA was 28+/-10% of the expected normal value, while LMM was 42% higher in patients with AS. There was no correlation to height, weight or BSA in patients with AS. With cardiac MRI, planimetry of AVA for normal subjects and patients with AS offered a simple, fast and non-invasive method to quantify AVA. In addition LMM and EF could be determined. The strong correlation between height and AVA documented in normal subjects offered the opportunity to integrate this relation between expected valve area and definitive orifice in determining the disease of the aortic valve for the individual patient. With diagnostic MRI in patients with AS, invasive measurements of the systolic transvalvular gradient does not seem to be necessary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.