Although low back pain (LBP) is a widespread and disabling health problem, there is a lack of evidence based medicine with respect to its treatment and rehabilitation. A major reason for this is the poor understanding of the underlying mechanisms of the LBP syndromes. In an attempt to fill this gap, the present review article provides an overview of the sensory-motor control aspects of trunk stabilization and postural control of the trunk, and how they may relate to the evolution of LBP. In particular, the anatomy and physiology of the sensory-motor control mechanisms of the trunk muscles that contribute to general and segmental stability of the lumbar spine will be elucidated. Furthermore, a brief overview of current theories of postural control will be provided with respect to spinal stabilization. Finally, a concept of the pathophysiological changes within the sensory-motor control mechanisms of the lumbar spine in the presence of muscle injury and pain will be presented. The impact of pain and muscle injury on the muscular support for the lumbar motion segment will be discussed along with the deficits in neuromuscular control in LBP patients with decreased segmental lumbar stability.
Patients with severe chronic heart failure (CHF) suffer from marked weakness of skeletal muscles. Neuromuscular electrical stimulation (NMES) proved to be an alternative to active strength training. The objective of this study was to test the feasibility and effectiveness of NMES in patients with chronic heart failure. Seven patients (56.0 +/- 5.0 years, CHF for 20 +/- 4 months, left ventricular ejection fraction 20.1 +/- 10.0%) finished an 8 week course of NMES of the knee extensor muscles. The stimulator delivered biphasic, symmetric, constant voltage impulses of 0.7 ms pulse width with a frequency of 50 Hz, 2 s on and 6 s off. No adverse effects occurred. After the stimulation period, the isokinetic peak torque of the knee extensor muscles increased by 13% from 101.0 +/- 8.7 Nm to 113.5 +/- 7.2 Nm (p = 0.004). The maximal isometric strength increased by 20% from 294.3 +/- 19.6 N to 354.14 +/- 15.7 N (p = 0.04). This increased muscle strength could be maintained in a 20 min fatigue test indicating decreased muscle fatigue. These results demonstrate that NMES of skeletal muscles in patients with severe chronic heart failure is a promising method for strength training in this group of patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.