This study deals with the effects of the use of a mixture of medium-chain fatty acids (MCFA) at the end of the alcohol fermentation process on the content of carbonyl compounds in wine. During the experiment, the effects of the addition of MCFA at doses of 10 and 20 mg/L were compared to the termination of alcohol fermentation using cross-flow filtration and chilling treatments. Individual carbonyl compounds were determined by HPLC analysis. The experiment showed that the addition of MCFA caused a reduction of the acetaldehyde content compared to the chilling process, and a reduction of the diacetyl content compared to cross-flow filtration. Throughout the experiment, a lower level of total carbonyl compounds was observed after the addition of MCFA.
This study focused on applying a patented medium-chain fatty acids (MCFAs) mixture at the end of alcoholic fermentation and monitoring its residues. MCFAs are a promising agent that has the potential to increase the efficiency of sulfur dioxide and ultimately minimize its doses, which is one of the important goals of wine research today. Detailed octanoic, decanoic, and dodecanoic acid contents were observed during the experiment. The MCFA mixture was applied at doses of 0, 10, 20, and 60 mg/L. GC–MS determined the content of individual fatty acids. The results showed that the use of the investigated mixture of fatty acids at doses of 10 and 20 mg/L did not cause an increase in the content of individual fatty acids residues. The octanoic acid content after application of the 20 mg/L MCFA mixture was 8.24 mg/L after 744 h, while the untreated control variant showed a value of 7.71 mg/L. The performed sensory analysis also did not show a negative effect of MCFA application on the sensory properties of wine. Therefore, applying an MCFA mixture at 10 and 20 mg/L can be recommended as a safe alternative following alcoholic fermentation. However, the results obtained can also serve as a valuable basis for permitting the use of MCFA in the proceeding OIV approval process. The research thus opens the possibility of expanding a new oenological agent capable of reducing SO2 doses.
This study is focused on the study of polyphenolic compounds in grape stems as by-product of winemaking industry. Two white varieties of Grüner Veltliner and Sauvignon and two red varieties of Blauer Portugieser and Cabernet Moravia were selected for the study. Antioxidant activity, concentration of total polyphenols and concentration of individual phenolic compounds were determined. The results show a higher concentration of polyphenols and higher values of antioxidant activity in red varieties. The Blauer Portugieser variety contained the highest concentrations of syringic acid 1.346 mg.L-1, caffeic acid 20 mg.L-1, ferulic acid 1.192 mg.L-1, coumaric acid 3.231 mg.L-1, trans-resveratrol 14.195 mg.L-1, catechin 79.314 mg.L-1 and epicatechin 33.205 mg.L-1. Cabernet Moravia contained the highest concentration of protocatechuic acid 1.201 mg.L-1, the Sauvignon variety reached the highest concentration of gallic acid 4.015 mg.L-1 and hydroxybenzoic acid 0.076 mg.L-1. The highest values of alpha-amino acids were determined in the Blauer Portugieser variety 165.3 mg L-1 and the lowest in the Grüner Veltliner variety 33.3 mg L-1. The highest concentration of ammonia nitrogen was 214 mg L-1 for the Blauer Portugieser variety and the lowest concentration of ammonia nitrogen was measured in Cabernet Moravia 35.7 mg L-1.
Oxygen plays a crucial role in all stages of wine production. The aim of this study was to quantify dissolved oxygen in filtered wines trained on fine lees during different technological operations such as racking, coarse filtration, stabilisation of thermolabile proteins, and sterile filtration and bottling. The most significant oxygenation of wine occurs during filtration (1.9–3.57 mg L−1) and during bottling (2.99–4.12 mg L−1). At the same time, oxygen affects the phenolic composition, antioxidant activity and sulphur dioxide.Understanding and being able to use oxygen correctly during wine production can lead to a reduction in the doses of sulphur dioxide used. It has been shown that wines trained on fine lees are more able to withstand oxygen and, therefore, the sulphur dioxide doses can be reduced substantially. The experiment, in which two different winemaking technologies were observed, was carried out on the Welschriesling variety using both stainless steel tanks and oak barrels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.