Honeycomb layered oxides constitute an emerging class of materials that show interesting physicochemical and electrochemical properties. However, the development of these materials is still limited. Here, we report the combined use of alkali atoms (Na and K) to produce a mixed-alkali honeycomb layered oxide material, namely, NaKNi2TeO6. Via transmission electron microscopy measurements, we reveal the local atomic structural disorders characterised by aperiodic stacking and incoherency in the alternating arrangement of Na and K atoms. We also investigate the possibility of mixed electrochemical transport and storage of Na+ and K+ ions in NaKNi2TeO6. In particular, we report an average discharge cell voltage of about 4 V and a specific capacity of around 80 mAh g–1 at low specific currents (i.e., < 10 mA g–1) when a NaKNi2TeO6-based positive electrode is combined with a room-temperature NaK liquid alloy negative electrode using an ionic liquid-based electrolyte solution. These results represent a step towards the use of tailored cathode active materials for “dendrite-free” electrochemical energy storage systems exploiting room-temperature liquid alkali metal alloy materials.
This review provides an accessible analysis of the processes on reference electrodes and their applications in Li-ion and next generation batteries research. It covers fundamentals and definitions as well as specific practical applications and is intended to be comprehensible for researchers in the battery field with diverse backgrounds. It covers fundamental concepts, such as two- and three-electrodes configurations, as well as more complex quasi- or pseudo- reference electrodes. The electrode potential and its dependance on the concentration of species and nature of solvents are explained in detail and supported by relevant examples. The solvent, in particular the cation solvation energy, contribution to the electrode potential is important and a largely unknown issue in most the battery research. This effect can be as high as half a volt for the Li/Li+ couple and we provide concrete examples of the battery systems where this effect must be taken into account. With this review, we aim to provide guidelines for the use and assessment of reference electrodes in the Li-ion and next generation batteries research that are comprehensive and accessible to an audience with a diverse scientific background.
Honeycomb layered oxides from Na2Ni2–xCoxTeO6 family were assessed for use as positive electrodes in rechargeable sodium batteries at ambient and elevated temperatures using ionic liquids. Substitution of nickel with cobalt...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.