We report inelastic light scattering results on the stoichiometric and fully ordered superconductor CaKFe4As4 as a function of temperature and light polarization. In the energy range between 10 and 315 cm −1 (1.24 and 39.1 meV) we observe the particle-hole continuum above and below the superconducting transition temperature Tc and 7 of the 8 Raman active phonons. The main focus is placed on the analysis of the electronic excitations. Below Tc all three symmetries projected with in-plane polarizations display a redistribution of spectral weight characteristic for superconductivity. The energies of the pair-breaking peaks in A1g and B2g symmetry are in approximate agreement with the results from photoemission studies. In B1g symmetry the difference between normal and superconducting state is most pronounced, and the feature is shifted downwards with respect to those in A1g and B2g symmetry. The maximum peaking at 134 cm −1 (16.6 meV) has a substructure on the high-energy side. We interpret the peak at 134 cm −1 in terms of a collective Bardasis-Schrieffer (BS) mode and the substructure as a remainder of the pair-breaking feature on the electron bands. There is a very weak peak at 50 cm −1 (6.2 meV) which is tentatively assigned to another BS mode.
Photon-counting detectors provide several potential advantages in biomedical x-ray imaging including fast and readout noise free data acquisition, sharp pixel response, and high dynamic range. Grating-based phase-contrast imaging is a biomedical imaging method, which delivers high soft-tissue contrast and strongly benefits from photon-counting properties. However, silicon sensors commonly used in photon-counting detectors have low quantum efficiency for mid- to high-energies, which limits high throughput capabilities when combined with grating-based phase contrast imaging. In this work, we characterize a newly developed photon-counting prototype detector with a gallium arsenide sensor, which enables imaging with higher quantum efficiency, and compare it with a silicon-based photon-counting and a scintillation-based charge integrating detector. In detail, we calculated the detective quantum efficiency (DQE) of all three detectors based on the experimentally measured modulation transfer function, noise power spectrum, and photon fluence. In addition, the DQEs were determined for two different spectra, namely, for a 28 kVp and a 50 kVp molybdenum spectrum. Among all tested detectors, the gallium arsenide prototype showed the highest DQE values for both x-ray spectra. Moreover, other than the comparison based on the DQE, we measured an ex vivo murine sample to assess the benefit using this detector for grating-based phase contrast computed tomography. Compared to the scintillation-based detector, the prototype revealed higher resolving power with an equal signal-to-noise ratio in the grating-based phase contrast computed tomography experiment.
Grating-based x-ray phase-contrast imaging provides three simultaneous image channels originating from a single image acquisition. While the phase signal provides direct access to the electron density in tomography, there is additional information on sub-resolutional structural information which is called dark-field signal in analogy to optical microscopy. The additional availability of the conventional attenuation image qualifies the method for implementation into existing diagnostic routines. The simultaneous access to the attenuation coefficient and the electron density allows for quantitative two-material discrimination as demonstrated lately for measurements at a quasi-monochromatic compact synchrotron source. Here, we investigate the transfer of the method to conventional polychromatic x-ray sources and the additional inclusion of the dark-field signal for three-material decomposition. We evaluate the future potential of grating-based x-ray phase-contrast CT for quantitative three-material discrimination for the specific case of early stroke diagnosis at conventional polychromatic x-ray sources. Compared to conventional CT, the method has the potential to discriminate coagulated blood directly from contrast agent extravasation within a single CT acquisition. Additionally, the dark-field information allows for the clear identification of hydroxyapatite clusters due to their micro-structure despite a similar attenuation as the applied contrast agent. This information on materials with sub-resolutional microstructures is considered to comprise advantages relevant for various pathologies.
Objective The aim of this study was to evaluate the potential of x-ray dark-field radiography for the noninvasive detection of monosodium urate (MSU) crystals as a novel diagnostic tool for gout. Materials and Methods Contrast-to-noise ratios of MSU crystals in conventional radiography and dark-field radiography have been compared in a proof of principle measurement. Monosodium urate crystals have been injected into mouse legs in an ex vivo experimental gout setup. Three radiologists independently evaluated the images for the occurrence of crystal deposits in a blinded study for attenuation images only, dark-field images only, and with both images available for a comprehensive diagnosis. All imaging experiments have been performed at an experimental x-ray dark-field setup with a 3-grating interferometer, a rotating anode tube (50 kVp), and a photon-counting detector (effective pixel size, 166 μm). Results X-ray dark-field radiography provided a strong signal increase for MSU crystals in a physiological buffer solution compared with conventional attenuation radiography with a contrast-to-noise ratio increase from 0.8 to 19.3. Based on conventional attenuation images only, the reader study revealed insufficient diagnostic performance (sensitivity, 11%; specificity, 92%) with poor interrater agreement (Cohen's coefficient κ = 0.031). Based on dark-field images, the sensitivity increased to 100%, specificity remained at 92%, and the interrater agreement increased to κ = 0.904. Combined diagnosis based on both image modalities maximized both sensitivity and specificity to 100% with absolute interrater agreement (κ = 1.000). Conclusions X-ray dark-field radiography enables the detection of MSU crystals in a mouse-based gout model. The simultaneous avaliability of a conventional attenuation image together with the dark-field image provides excellent detection rates of gout deposits with high specificity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.