Three types of experiments indicate that the functional organization of the mountain birch may influence the ways in which the tree responds to simulated or natural herbivory. The first experiment showed that herbivory to both short and long shoot leaves affects plant development but, because growth largely proceeds by resources of the previous year, is manifested only in the year following the damage. The second experiment showed that even partial damage to a single long shoot leaf caused the axillary bud of that leaf to produce a shorter shoot the next year. Therefore, the value of a leaf depends also on the organ which it is subtending. In the third experiment we manipulated the apical dominance of shoots in ramets and caused improvement to leaf quality in extant shoots. Ramets within a tree responded individually, probably mediated by disturbance of the hormonal control because removal of apical buds elicited the response although removal of the same number of basal buds did not. Induced amelioration is a different response to induced resistance. The two responses are triggered by different cues and may occur in the same plant. By altering hormonal balance of shoots it is potentially possible for herbivores to induce amelioration of food quality. The ways in which herbivory is simulated may explain variability of results obtained when herbivory-induced responses in plants have been studied.
Understanding the interplay between environmental factors contributing to treeline formation and how these factors influence different life stages remains a major research challenge. We used an afforestation experiment including 92 000 trees to investigate the spatial and temporal dynamics of tree mortality and growth at treeline in the Swiss Alps. Seedlings of three high-elevation conifer species (Larix decidua, Pinus mugo ssp. uncinata, and Pinus cembra) were systematically planted along an altitudinal gradient at and above the current treeline (2075 to 2230 m above sea level [a.s.l.]) in 1975 and closely monitored during the following 30 years. We used decision-tree models and generalized additive models to identify patterns in mortality and growth along gradients in elevation, snow duration, wind speed, and solar radiation, and to quantify interactions between the different variables. For all three species, snowmelt date was always the most important environmental factor influencing mortality, and elevation was always the most important factor for growth over the entire period studied. Individuals of all species survived at the highest point of the afforestation for more than 30 years, although mortality was greater above 2160 m a.s.l., 50-100 m above the current treeline. Optimal conditions for height growth differed from those for survival in all three species: early snowmelt (ca. day of year 125-140 [where day 1 is 1 January]) yielded lowest mortality rates, but relatively later snowmelt (ca. day 145-150) yielded highest growth rates. Although snowmelt and elevation were important throughout all life stages of the trees, the importance of radiation decreased over time and that of wind speed increased. Our findings provide experimental evidence that tree survival and height growth require different environmental conditions and that even small changes in the duration of snow cover, in addition to changes in temperature, can strongly impact tree survival and growth patterns at treeline. Further, our results show that the relative importance of different environmental variables for tree seedlings changes during the juvenile phase as they grow taller.
Populations from 13 elevational transects of Norway spruce [Picea abies (L.) Karst] across the Alpine range were sampled to elucidate the geographical pattern of genetic variation in relation to postglacial re-colonization and to study elevational effects on haplotypic diversity. We assessed fragment length variation in a tandem repeat region of the mitochondrial (mt) nad1 intron 2. This maternally inherited genetic marker is suited to infer migration as it is dispersed by seed only. A total of 10 haplotypes was found, most of which were due to repeat copy number variation. An analysis of molecular variance (amova) showed that overall population differentiation was high (F(ST)=0.41), and it revealed a significant differentiation between monomorphic western and moderately to highly variable eastern Alpine populations. This phylogeographic pattern may be explained by a founder effect during postglacial re-colonization. An early arriving haplotype, assumed to originate from a western Carpathian refugium, could expand into suitable habitats, reducing the chances for establishment of subsequently arriving haplotypes. On the other hand, the high variation in populations within an Italian transect of the south-eastern Alps may be the consequence of merging migration pathways from and close distance to putative glacial refugia, most likely those assumed in the Carpathian mountains and on the Balkan peninsula or possibly in the central plains of Italy. An effect of elevation on haplotypic diversity was not evident, though a low, but significant, partition of total genetic variation was attributed to among-population variation in one Italian transect. Various factors, such as vertical seed dispersal and forest management, may account for blurring an otherwise established pattern of genetic variation on a small geographical scale.
Anthropogenic transportation infrastructure is a major factor of habitat fragmentation leading to genetic population fragmentation in wildlife. Assessing and understanding the impact of this deterministic factor on genetic diversity and divergence of populations is crucial to appraise the viability of wildlife populations in fragmented landscapes. In this study, the roe deer is used as an example species for the assessment of genetic differentiation of populations separated by an anthropogenic barrier. In order to detect genetic discontinuities, we screened 12 polymorphic microsatellites on 222 individuals out of 11 roe deer populations that were sampled on the east and the westside of a fenced motorway in Central Switzerland. The interaction between landscape structure and microevolutionary processes such as gene flow and drift were assessed and evaluated by different population genetic methods like F-statistics, Mantel test, spatial autocorrelation analyses, Monmonier algorithm, and principal component analysis in conjunction with geographic information system data (synthesis map). We revealed an influence of the transportation infrastructure on genetic divergence of the roe deer population examined, but no impact on genetic diversity was detected. Based on the achieved genetic findings, recommendations for management implementation were made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.