The consideration of uncertainty in manufacturing systems supposes a great advance. Models for production planning which do not recognize the uncertainty can be expected to generate inferior planning decisions as compared to models that explicitly account for the uncertainty. This paper reviews some of the existing literature of production planning under uncertainty. The research objective is to provide the reader with a starting point about uncertainty modelling in production planning problems aimed at production management researchers. The literature review that we compiled consists of 87 citations from 1983 to 2004. A classification scheme for models for production planning under uncertainty is defined. r
Currently, enterprises have to make quick and resilient responses to changing market requirements. In light of this, low-code development platforms provide the technology mechanisms to facilitate and automate the development of software applications to support current enterprise needs and promote digital transformation. Based on a theory-building research methodology through the literature and other information sources review, the main contribution of this paper is the current characterisation of the emerging low-code domain following the foundations of the computer-aided software engineering field. A context analysis, focused on the current status of research related to the low-code development platforms, is performed. Moreover, benchmarking among the existing low-code development platforms addressed to manufacturing industry is analysed to identify the current lacking features. As an illustrative example of the emerging low-code paradigm and respond to the identified uncovered features, the virtual factory open operating system (vf-OS) platform is described as an open multi-sided low-code framework able to manage the overall network of a collaborative manufacturing and logistics environment that enables humans, applications, and Internet of Things (IoT) devices to seamlessly communicate and interoperate in the interconnected environment, promoting resilient digital transformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.