4D flow MRI enables quantitative assessment of helical flow. Current methods are susceptible to noise. To evaluate helical flow patterns in healthy volunteers and patients with bicuspid aortic valves (BAV) at 1.5 T and 3 T using pressure-based helix-extraction in 4D flow MRI. Two intraindividual 4D flow MRI examinations were performed at 1.5 T and 3 T in ten healthy volunteers (5 females, 32 ± 3 years) and 2 patients with BAV using different acceleration techniques (kt-GRAPPA and centra). Several new quantitative parameters for the evaluation of volumes [ml], lengths [mm] as well as temporal parameters [ms] of helical flow were introduced and analyzed using the software tool Bloodline. We found good correlations between measurements in volunteers at 1.5 T and 3 T regarding helical flow volumes (R = 0.98) and temporal existence (R = 0.99) of helices in the ascending aorta. Furthermore, we found significantly larger (11.7 vs. 77.6 ml) and longer lasting (317 vs. 769 ms) helices in patients with BAV than in volunteers. The assessed parameters do not depend on the magnetic field strength used for the acquisition. The technique of pressure-based extraction of 4D flow MRI pattern is suitable for differentiation of normal and pathological flow.
To compare two broadly used 4D-flow- with a 2D-flow-sequence in healthy volunteers, regarding absolute flow parameters, image quality (IQ), and eddy current correction (ECC). Forty volunteers (42 ± 11.8 years, 22 females) were examined with a 3T scanner. Thoracic aortic flow was assessed using a 3D-T2w-SPACE-STIR-sequence for morphology and two accelerated 4D-flow sequences for comparison, one with k-t undersampling and one with standard GRAPPA parallel-imaging. 2D-flow was used as reference standard. The custom-made software tool Bloodline enabled flow measurements for all analyses at the same location. Quantitative flow analyses were performed with and without ECC. One reader assessed pathline IQ (IQ-PATH) and occurrence of motion artefacts (IQ-ART) on a 3-point grading scale, the higher the better. k-t GRAPPA allowed a significant mean scan time reduction of 46% (17:56 ± 5:26 min vs. 10:40 ± 3:15 min) and provided significantly fewer motion artefacts than standard GRAPPA (IQ-ART 1.57 ± 0.55 vs. 0.84 ± 0.48; p < 0.001). Neither 4D-flow sequence significantly differed in flow volume nor peak velocity results with or without ECC. Nevertheless, the correlation between both 4D-flow sequences and 2D-flow was better with ECC; the k-t GRAPPA sequence performed best (R = 0.96 vs. 0.90). k-t GRAPPA 4D-flow was not inferior to a standard GRAPPA-sequence, showed fewer artefacts, comparable IQ and was almost two-fold faster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.