Because of the critical role of SOD2 in the generation of hydrogen peroxide during phagocytosis, downregulation of SOD2 gene expression after LPS stimulation in neutrophils from patients with CKD indicates a potential mechanism for neutrophil dysfunction and cytokine dysregulation in these patients.
IntroductionIn Chronic Kidney Disease (CKD), immune cells are affected by uremic retention toxins. Given this effect, we analyzed lymphocyte proliferative response and immune modulators production following in vitro stimulation.MethodsWhole blood was drawn from healthy controls, patients with eGFR <20 ml/min/1.73 m2 (Pre-dialysis, CKD stages 4 and 5) and hemodialysis patients (stage 5D). Peripheral cells were incubated for six days with pokeweed mitogen, concanavalin A, Staphylococcus enterotoxin A or influenza A vaccine. Peripheral lymphocyte proliferation was then analyzed by the “Flow-cytometric Assay of Specific Cell-mediated Immune response in Activated whole blood” (FASCIA) method, and cytokine profile in the cell supernatants was analyzed by the Milliplex multi-array method.ResultsThe absolute number of lymphoblasts in response to mitogenic stimulation and the number of cells in each CD4+ and CD8+ subpopulation were similar comparing the three groups, except for a single decline in number of lymphoblasts after stimulation with Staphylococcus enterotoxin A, comparing dialysis patients with healthy controls. Levels of interleukin (IL)-2 (p=0.026), -10 (p=0.019) and -15 (p=0.027) in the Staphylococcus enterotoxin A-stimulated supernatant were lower in hemodialysis patients compared to healthy controls. Levels of IL-15 (p=0.017) from pre-dialysis patients and levels of IL-5 (p=0.019) from hemodialysis patients in influenza A vaccine-stimulated supernatants were also lower compared to controls. In pokeweed mitogen–stimulated supernatant, IL-2 levels (p=0.013) were lower in hemodialysis patients compared to pre-dialysis patients. TNF-α, IL-10, IL-12, IL-15, IL-8, MCP-1, IP-10, IFN-α2, IL-1α and eotaxin levels were all significantly higher in plasma obtained from CKD patients.ConclusionOur results suggest that T-cells from CKD patients have similar proliferative response to stimulation compared with healthy individuals. Moreover, however the immune cells show inability to produce selected cytokines, most likely due to the uremic milieu or dialysis procedure.
The impact of high-flux hemodialysis on clinical outcomes remains controversial. We have previously shown that in vivo transmigrated leukocytes from patients with low-flux bioincompatible hemodialysis have an impaired capacity to upregulate CD11b at the site of interstitial inflammation. In the present study, we investigated the in vivo capacity of transmigrated monocytes and granulocytes to express CD11b at the site of interstitial inflammation in 10 patients on biocompatible high-flux hemodiafiltration or high-flux hemodialysis and 12 healthy subjects, and the in vitro response to a bacteria-related peptide (N-formyl-methionyl-leucyl-phenylalanine (fMLP)). Leukocyte formation of hydrogen peroxide (H(2)O(2)) and leukocyte apoptosis were also studied. In patients, both monocytes and granulocytes had a preserved capacity to express CD11b following in vivo transmigration to sites of interstitial inflammation, compared with cells from healthy subjects. Furthermore, monocytes and granulocytes from patients showed a preserved ability to respond to challenge with fMLP in the extravascular milieu. The intracellular killing capacity of leukocytes (H(2)O(2) production) in the interstitium was similar as of cells from healthy subjects both before and after stimulation with fMLP. Following maximal receptor independent stimulation (phorbol 12-myristate 13-acetate), leukocytes from patients showed lower H(2)O(2) production at the site of intense inflammation, compared with cells from healthy subjects. Finally, leukocyte apoptosis in interstitial inflammation was similar in patients and healthy subjects. We conclude that in vivo transmigrated leukocytes from patients on biocompatible high-flux hemodiafiltration or high-flux hemodialysis have a preserved capacity to express CD11b at the site of interstitial inflammation. This may have important biological implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.