Coordination of energy metabolism is essential for homeostasis of stem cells, whereas an imbalance in energy homeostasis causes disease and accelerated aging. Here we show that deletion or enzymatic inactivation of lysine-specific demethylase 1 (Lsd1) triggers senescence in trophoblast stem cells (TSCs). Genome-wide transcriptional profiling of TSCs following Lsd1 inhibition shows gene set enrichment of aging and metabolic pathways. Consistently, global metabolomic and phenotypic analyses disclose an unbalanced redox status, decreased glutamine anaplerosis and mitochondrial function. Loss of homeostasis is caused by increased expression of sirtuin 4 (Sirt4), a Lsd1-repressed direct target gene. Accordingly, Sirt4 overexpression in wild-type TSCs recapitulates the senescence phenotype initiated by Lsd1 deletion or inhibition. Inversely, absence of Lsd1 enzymatic activity concomitant with knockdown of Sirt4 reestablishes normal glutamine anaplerosis, redox balance and mitochondrial function. In conclusion, by repression of Sirt4, Lsd1 directs the epigenetic control of TSC immortality via maintenance of metabolic flexibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.