BackgroundDengue virus (DENV) infection can range in severity from mild dengue fever (DF) to severe dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS). Changes in host gene expression, temporally through the progression of DENV infection, especially during the early days, remains poorly characterized. Early diagnostic markers for DHF are also lacking.Methodology/Principal FindingsIn this study, we investigated host gene expression in a cohort of DENV-infected subjects clinically diagnosed as DF (n = 51) and DHF (n = 13) from Maracay, Venezuela. Blood specimens were collected daily from these subjects from enrollment to early defervescence and at one convalescent time-point. Using convalescent expression levels as baseline, two distinct groups of genes were identified: the “early” group, which included genes associated with innate immunity, type I interferon, cytokine-mediated signaling, chemotaxis, and complement activity peaked at day 0–1 and declined on day 3–4; the second “late” group, comprised of genes associated with cell cycle, emerged from day 4 and peaked at day 5–6. The up-regulation of innate immune response genes coincided with the down-regulation of genes associated with viral replication during day 0–3. Furthermore, DHF patients had lower expression of genes associated with antigen processing and presentation, MHC class II receptor, NK and T cell activities, compared to that of DF patients. These results suggested that the innate and adaptive immunity during the early days of the disease are vital in suppressing DENV replication and in affecting outcome of disease severity. Gene signatures of DHF were identified as early as day 1.Conclusions/SignificanceOur study reveals a broad and dynamic picture of host responses in DENV infected subjects. Host response to DENV infection can now be understood as two distinct phases with unique transcriptional markers. The DHF signatures identified during day 1–3 may have applications in developing early molecular diagnostics for DHF.
Influenza vaccination prevented influenza cases and hospitalizations and was associated with a better prognosis in inpatients with influenza. The combined effect of these 2 mechanisms would explain the high effectiveness of the vaccine in preventing severe cases due to influenza.
Abstract. Dengue virus infections are a major cause of morbidity in tropical countries. Early detection of dengue hemorrhagic fever (DHF) may help identify individuals that would benefit from intensive therapy. Predictive modeling was performed using 11 laboratory values of 51 individuals (38 DF and 13 DHF) obtained on initial presentation using logistic regression. We produced a robust model with an area under the curve of 0.9615 that retained IL-10 levels, platelets, and lymphocytes as the major predictive features. A classification and regression tree was developed on these features that were 86% accurate on cross-validation. The IL-10 levels and platelet counts were also identified as the most informative features associated with DHF using a Random Forest classifier. In the presence of polymerase chain reaction-proven acute dengue infections, we suggest a complete blood count and rapid measurement of IL-10 can assist in the triage of potential DHF cases for close follow-up or clinical intervention improving clinical outcome.
Multiple myeloma (MM) remains incurable partly because no effective cell cycle-based therapy has been available to both control tumor cell proliferation and synergize with cytotoxic killing. PD 0332991 is an orally active small molecule that potently and specifically inhibits Cdk4 and Cdk6. It has been shown to induce rapid G 1 cell cycle arrest in primary human myeloma cells and suppress tumor growth in xenograft models. To improve therapeutic targeting of myeloma progression, we combined tumor suppression by PD 0332991 with cytotoxic killing by bortezomib, a proteasome inhibitor widely used in myeloma treatment, in the immunocompetent 5T33MM myeloma model. We show that 5T33MM tumor cells proliferate aggressively in vivo due to expression of cyclin D2, elevation of Cdk4, and impaired p27Kip1 expression, despite inhibition of Cdk4/6 by p18INK4c and the maintenance of a normal plasma cell transcription program. PD 0332991 potently inhibits Cdk4/6-specific phosphorylation of Rb and cell cycle progression through G 1 in aggressively proliferating primary 5T33MM cells, in vivo and ex vivo. This leads to tumor suppression and a significant improvement in survival. Moreover, induction of G 1 arrest by PD 0332991 sensitizes 5T33MM tumor cells to killing by bortezomib. Inhibition of Cdk4/6 by PD 0332991, therefore, effectively controls myeloma tumor expansion and sensitizes tumor cells to bortezomib killing in the presence of an intact immune system, thereby representing a novel and promising cell cycle-based combination therapy.
Background Human rhinovirus (HRV) is a major cause of influenza-like illness (ILI) in adults and children. Differences in disease severity by HRV species have been described among hospitalized patients with underlying illness. Less is known about the clinical and virologic characteristics of HRV infection among otherwise healthy populations, particularly adults. Objectives To characterize molecular epidemiology of HRV and association between HRV species and clinical presentation and viral shedding. Study design Observational, prospective, facility-based study of ILI was conducted from February 2010 to April 2012. Collection of nasopharyngeal specimens, patient symptoms, and clinical information occurred on days 0, 3, 7, and 28. Patients recorded symptom severity daily for the first 7 days of illness in a symptom diary. HRV was identified by RT-PCR and genotyped for species determination. Cases who were co-infected with other viral respiratory pathogens were excluded from the analysis. We evaluated the associations between HRV species, clinical severity, and patterns of viral shedding. Results Eighty-four HRV cases were identified and their isolates genotyped. Of these, 62 (74%) were >18y. Fifty-four were HRV-A, 11 HRV-B, and 19 HRV-C. HRV-C infection was more common among children than adults (59% vs. 10%, P<0.001). Among adults, HRV-A was associated with higher severity of upper respiratory symptoms compared to HRV-B (P=0.02), but no such association was found in children. In addition, adults shed HRV-A significantly longer than HRV-C (Ptrend=0.01). Conclusions Among otherwise healthy adults with HRV infection, we observed species-specific differences in respiratory symptom severity and duration of viral shedding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.