The small-molecule drug voriconazole (VRC) shows a complex and not yet fully understood metabolism. Consequently, its in vivo pharmacokinetics are challenging to predict, leading to therapy failures or adverse events. Thus, a quantitative in vitro characterization of the metabolism and inhibition properties of VRC for human CYP enzymes was aimed for. The Michaelis–Menten kinetics of voriconazole N-oxide (NO) formation, the major circulating metabolite, by CYP2C19, CYP2C9 and CYP3A4, was determined in incubations of human recombinant CYP enzymes and liver and intestine microsomes. The contribution of the individual enzymes to NO formation was 63.1% CYP2C19, 13.4% CYP2C9 and 29.5% CYP3A4 as determined by specific CYP inhibition in microsomes and intersystem extrapolation factors. The type of inhibition and inhibitory potential of VRC, NO and hydroxyvoriconazole (OH–VRC), emerging to be formed independently of CYP enzymes, were evaluated by their effects on CYP marker reactions. Time-independent inhibition by VRC, NO and OH–VRC was observed on all three enzymes with NO being the weakest and VRC and OH–VRC being comparably strong inhibitors of CYP2C9 and CYP3A4. CYP2C19 was significantly inhibited by VRC only. Overall, the quantitative in vitro evaluations of the metabolism contributed to the elucidation of the pharmacokinetics of VRC and provided a basis for physiologically-based pharmacokinetic modeling and thus VRC treatment optimization.
Purpose
Voriconazole is a therapeutically challenging antifungal drug associated with high interindividual pharmacokinetic variability. As a prerequisite to performing clinical trials using the minimally-invasive sampling technique microdialysis, a comprehensive in vitro microdialysis characterization of voriconazole (VRC) and its potentially toxic N-oxide metabolite (NO) was performed.
Methods
The feasibility of simultaneous microdialysis of VRC and NO was explored in vitro by investigating the relative recovery (RR) of both compounds in the absence and presence of the other. The dependency of RR on compound combination, concentration, microdialysis catheter and study day was evaluated and quantified by linear mixed-effects modeling.
Results
Median RR of VRC and NO during individual microdialysis were high (87.6% and 91.1%). During simultaneous microdialysis of VRC and NO, median RR did not change (87.9% and 91.1%). The linear mixed-effects model confirmed the absence of significant differences between RR of VRC and NO during individual and simultaneous microdialysis as well as between the two compounds (p > 0.05). No concentration dependency of RR was found (p = 0.284). The study day was the main source of variability (46.3%) while the microdialysis catheter only had a minor effect (4.33%). VRC retrodialysis proved feasible as catheter calibration for both compounds.
Conclusion
These in vitro microdialysis results encourage the application of microdialysis in clinical trials to assess target-site concentrations of VRC and NO. This can support the generation of a coherent understanding of VRC pharmacokinetics and its sources of variability. Ultimately, a better understanding of human VRC pharmacokinetics might contribute to the development of personalized dosing strategies.
Purpose
Voriconazole is an essential antifungal drug whose complex pharmacokinetics with high interindividual variability impedes effective and safe therapy. By application of the minimally-invasive sampling technique microdialysis, interstitial space fluid (ISF) concentrations of VRC and its potentially toxic N-oxide metabolite (NO) were assessed to evaluate target-site exposure for further elucidating VRC pharmacokinetics.
Methods
Plasma and ISF samples of a clinical trial with an approved VRC dosing regimen were analyzed for VRC and NO concentrations. Concentration-time profiles, exposure assessed as area-under-the-curve (AUC) and metabolic ratios of four healthy adults in plasma and ISF were evaluated regarding the impact of multiple dosing and CYP2C19 genotype.
Results
VRC and NO revealed distribution into ISF with AUC values being ≤2.82- and 17.7-fold lower compared to plasma, respectively. Intraindividual variability of metabolic ratios was largest after the first VRC dose administration while interindividual variability increased with multiple dosing. The CYP2C19 genotype influenced interindividual differences with a maximum 6- and 24-fold larger AUCNO/AUCVRC ratio between the intermediate and rapid metabolizer in plasma and ISF, respectively. VRC metabolism was saturated/auto-inhibited indicated by substantially decreasing metabolic concentration ratios with increasing VRC concentrations and after multiple dosing.
Conclusion
The feasibility of the simultaneous microdialysis of VRC and NO in vivo was demonstrated and provided new quantitative insights by leveraging distribution and metabolism processes of VRC in humans. The exploratory analysis suggested substantial dissimilarities of VRC and NO pharmacokinetics in plasma and ISF. Ultimately, a thorough understanding of target-site pharmacokinetics might contribute to the optimization of personalized VRC dosing regimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.