Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold-air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free-air temperatures, microclimatic ground and near-surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near-surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries
The large amounts of soil organic matter (SOM) in permafrost-affected soils are prone to increased microbial decomposition in a warming climate. The environmental parameters regulating the production of carbon dioxide (CO2) and methane (CH4), however, are insufficiently understood to confidently predict the feedback of thawing permafrost to global warming. Therefore, the effects of oxygen availability, freezing and thawing, temperature, and labile organic matter (OM) additions on greenhouse gas production were studied in northeast Siberian polygonal tundra soils, including the seasonally thawed active layer and upper perennially frozen permafrost. Soils were incubated at constant temperatures of 1 °C, 4 °C, or 8 °C for up to 150 days. CO2 production in surface layers was three times higher than in the deeper soil. Under anaerobic conditions, SOM decomposition was 2–6 times lower than under aerobic conditions and more CO2 than CH4 was produced. CH4 contributed less than 2% to anaerobic decomposition in thawed permafrost but more than 20% in the active layer. A freeze-thaw cycle caused a short-lived pulse of CO2 production directly after re-thawing. Q10 values, calculated via the equal-carbon method, increased with soil depth from 3.4 ± 1.6 in surface layers to 6.1 ± 2.8 in the permafrost. The addition of plant-derived labile OM (13C-labelled Carex aquatilis leaves) resulted in an increase in SOM decomposition only in permafrost (positive priming). The current results indicate that the decomposition of permafrost SOM will be more strongly influenced by rising temperatures and the availability of labile OM than active layer material. The obtained data can be used to inform process-based models to improve simulations of greenhouse gas production potentials from thawing permafrost landscapes
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids thus fail to reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions are controlled and most terrestrial species reside. Here we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0-5 and 5-15 cm depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all of the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding 2 m gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (3.6 ± 2.3°C warmer than gridded air temperature), whereas soils in warm and humid environments are on average slightly cooler (0.7 ± 2.3°C cooler). The observed substantial and biome-specific offsets underpin that the projected impacts of climate and climate change on biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining global gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.