The low energy structure of 65 Co was studied by means of γ-and fast-timing spectroscopy at the ISOLDE/CERN facility. The known level scheme of 65 Co populated following the β − decay of 65 Fe was expanded. The experimental results were compared with large scale shell-model calculations. The measured long lifetime of the (1/2 − 1) level confirms its nature as a highly collective state with proton excitations across the Z=28 gap and neutrons across the N=40 sub-shell.
The inorganic composition of the bark and leaf of a plant from the Amazon rainforest, Andira surinamensis, was determined using two non-destructive, multi-element techniques: X-ray fluorescence (XRF) and Rutherford backscattering spectrometry (RBS). XRF measurements were made using both a conventional X-ray source and synchrotron radiation. It was observed that although magnesium, aluminum, silicon, phosphorus, sulfur, chlorine, and potassium are present in higher concentrations in the leaf, calcium is about three times more concentrated in the bark. Manganese, iron, copper, zinc, strontium and barium were also detected, with barium showing a concentration above the minimum toxicity level for plants. Chemical speciation of sulfur, performed using the X-ray absorption near edge structure (XANES) technique, showed that sulfur is present in several oxidation states, with a much larger contribution from the inorganic sulfate in the leaves. The article evidences that the combined use of synchrotron radiation and non-destructive multielement techniques allows for an efficient and accurate determination of the inorganic composition and chemical speciation in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.