Most congestion control algorithms, like TCP, rely on a reactive control system that detects congestion, then marches carefully towards a desired operating point (e.g. by modifying the window size or adjusting a rate). In an effort to balance stability and convergence speed, they often take hundreds of RTTs to converge; an increasing problem as networks get faster, with less time to react. This paper is about an alternative class of congestion control algorithms based on proactive-scheduling: switches and NICs "pro-actively" exchange control messages to run a \em distributed algorithm to pick "explicit rates for each flow. We call these Proactive Explicit Rate Control (PERC) algorithms. They take as input the routing matrix and link speeds, but not a congestion signal. By exploiting information such as the number of flows at a link, they can converge an order of magnitude faster than reactive algorithms. Our main contributions are (1) s-PERC ("stateless" PERC), a new practical distributed PERC algorithm without per-flow state at the switches, and (2) a proof that s-PERC computes exact max-min fair rates in a known bounded time, the first such algorithm to do so without per-flow state. To analyze s-PERC, we introduce a parallel variant of standard waterfilling, 2-Waterfilling. We prove that s-PERC converges to max-min fair in 6N rounds, where N is the number of iterations 2-Waterfilling takes for the same routing matrix. We describe how to make s-PERC practical and robust to deploy in real networks. We confirm using realistic simulations and an FPGA hardware testbed that s-PERC converges 10-100x faster than reactive algorithms like TCP, DCTCP and RCP in data-center networks and 1.3--6x faster in wide-area networks (WANs). Long flows complete in close to the ideal time, while short-lived flows are prioritized, making it appropriate for data-centers and WANs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.