A T-->G transversion at nt 8993 in mitochondrial DNA of MTATP6 (encoding ATPase 6 of complex V of the respiratory chain) causes impaired mitochondrial ATP synthesis in two related mitochondrial disorders: neuropathy, ataxia and retinitis pigmentosa and maternally inherited Leigh syndrome. To overcome the biochemical defect, we expressed wildtype ATPase 6 protein allotopically from nucleus-transfected constructs encoding an amino-terminal mitochondrial targeting signal appended to a recoded ATPase 6 gene (made compatible with the universal genetic code) that also contained a carboxy-terminal FLAG epitope tag. After transfection of human cells, the precursor polypeptide was expressed, imported into and processed within mitochondria, and incorporated into complex V. Allotopic expression of stably transfected constructs in cytoplasmic hybrids (cybrids) homoplasmic with respect to the 8993T-->G mutation showed a significantly improved recovery after growth in selective medium as well as a significant increase in ATP synthesis. This is the first successful demonstration of allotopic expression of an mtDNA-encoded polypeptide in mammalian cells and could form the basis of a genetic approach to treat a number of human mitochondrial disorders.
Pigment epithelium-derived factor (PEDF) is a potent anti-angiogenic factor found in a wide range of fetal and adult tissues, where it is thought to play a role in the regulation of angiogenesis during development. The temporal expression of PEDF during endochondral bone formation has not previously been reported. In this study, we analysed the expression pattern of PEDF in growing mouse hindlimbs from newborn day one through to maturation at week 9, using immunohistochemistry and in situ hybridization. PEDF expression was demonstrated in chondrocytes within the resting, proliferative and upper hypertrophic zones of the epiphyseal growth plate. The pattern of expression was consistent throughout the developmental stages of the mouse. In addition, PEDF was expressed by osteoblasts lining the bone spicules in the ossification zone of metaphyseal bone, as well as by osteoblasts lining cortical periosteum. These novel results demonstrate that PEDF is developmentally expressed in both cartilage and bone cells during endochondral bone formation, and strongly suggest that it may play a regulatory role in the processes of chondrocyte and osteoblast differentiation, endochondral ossification, and bone remodelling during growth and development of long bones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.