SummaryThe Salmonella enterica serotype Typhimurium ( S. Typhimurium) genome contains 13 putative fimbrial operons termed agf ( csg ), fim , pef , lpf , bcf , saf , stb , stc , std , stf , sth , sti and stj . Evidence for in vitro expression of fimbrial proteins encoded by these operons is currently only available for agf , fim and pef . We raised antisera against putative major fimbrial subunits of S. Typhimurium, including AgfA, FimA, PefA, LpfA, BcfA, StbA, StcA, StdA, StfA, SthA and StiA. Elaboration of StcA on the bacterial surface could be detected by flow cytometry and immunoelectron microscopy after expression of the cloned stcABCD operon from a heterologous T7 promoter in Escherichia coli. To study the expression of fimbrial antigens in S. Typhimurium by flow cytometry, we constructed strains carrying deletions of agfAB , pef-BACDI , lpfABCDE , bcfABCDEFG , stbABCD , stcABC , stdAB , stfACDEFG , sthABCDE or stiABCDE . Using these deletion mutants for gating, expression of fimbrial antigens was measured by flow cytometry in cultures grown in vitro or in samples recovered 8 h after infection of bovine ligated ileal loops with S.
SummaryKnowledge about the origin and identity of the microbial products recognized by the innate immune system is important for understanding the pathogenesis of inflammatory diseases. We investigated the potential role of Salmonella enterica serotype Typhimurium fimbriae as pathogen-associated molecular patterns (PAMPs) that may stimulate innate pathways of inflammation. We screened a panel of 11 mutants, each carrying a deletion of a different fimbrial operon, for their enteropathogenicity using the calf model of human gastroenteritis. One mutant ( csgBA ) was attenuated in its ability to elicit fluid accumulation and GRO α α α α mRNA expression in bovine ligated ileal loops. The mechanism by which thin curled fimbriae encoded by the csg genes contribute to inflammation was further investigated using tissue culture. The S. Typhimurium csgBA mutant induced significantly less IL-8 production than the wild type in human macrophage-like cells. Purified thin curled fimbriae induced IL-8 expression in human embryonic kidney (HEK293) cells transfected with Toll-like receptor (TLR) 2/CD14 but not in cells transfected with TLR5, TLR4/MD2/CD14 or TLR11. Fusion proteins between the major fimbrial subunit of thin curled fimbriae (CsgA) and glutathione-S-transferase (GST) elicited
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of chronic enteritis in ruminants (Johne's disease) and a possible etiopathologic agent in human Crohn's disease. The host-pathogen interaction in this chronic disease has largely depended on the randomly collected static lesions studied in subclinically or clinically infected animals. We have established and utilized the neonatal calf ligated ileal loop model to study the early temporal host changes during MAP infection. After inoculation of ligated ileal loop with MAP, samples were analyzed for bacterial invasion, histologic and ultrastructural morphologic changes, and gene expression at several times (0.5-12 hours) postinfection. Our results indicate that MAP invades the intestinal mucosa as early as 0.5 hour postinoculation. Distribution and migration of neutrophils, monocytes/macrophages, and goblet cells were confirmed by histopathology, scanning and transmission electron microscopy. Coincident with the morphologic analysis, we measured by real-time polymerase chain reaction gene expression of various cytokines/chemokines that are involved in the recruitment of mononuclear and polymorphonuclear leukocytes to the site of infection. We also detected expression of several other genes, including intestinal-trefoil factor, profilin, lactoferrin, and enteric ss-defensin, which may play significant roles in the early MAP infection. Thus, the calf ligated intestinal loop model may be used as a human disease model to understand the role of MAP in the pathogenesis of Crohn's disease.
Survival and persistence of Mycobacterium avium subsp. paratuberculosis (MAP) in the intestinal mucosa is associated with host immune tolerance. However, the initial events during MAP interaction with its host that lead to pathogen survival, granulomatous inflammation, and clinical disease progression are poorly defined. We hypothesize that immune tolerance is initiated upon initial contact of MAP with the intestinal Peyer's patch. To test our hypothesis, ligated ileal loops in neonatal calves were infected with MAP. Intestinal tissue RNAs were collected (0.5, 1, 2, 4, 8 and 12 hrs post-infection), processed, and hybridized to bovine gene expression microarrays. By comparing the gene transcription responses of calves infected with the MAP, informative complex patterns of expression were clearly visible. To interpret these complex data, changes in the gene expression were further analyzed by dynamic Bayesian analysis, and genes were grouped into the specific pathways and gene ontology categories to create a holistic model. This model revealed three different phases of responses: i) early (30 min and 1 hr post-infection), ii) intermediate (2, 4 and 8 hrs post-infection), and iii) late (12 hrs post-infection). We describe here the data that include expression profiles for perturbed pathways, as well as, mechanistic genes (genes predicted to have regulatory influence) that are associated with immune tolerance. In the Early Phase of MAP infection, multiple pathways were initiated in response to MAP invasion via receptor mediated endocytosis and changes in intestinal permeability. During the Intermediate Phase, perturbed pathways involved the inflammatory responses, cytokine-cytokine receptor interaction, and cell-cell signaling. During the Late Phase of infection, gene responses associated with immune tolerance were initiated at the level of T-cell signaling. Our study provides evidence that MAP infection resulted in differentially regulated genes, perturbed pathways and specifically modified mechanistic genes contributing to the colonization of Peyer's patch.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.