TTX inactivation of the BLA, ACing, or PL impaired the ability of LT presentations to reinstate extinguished lever pressing for cocaine-paired stimuli. In contrast, inactivation of the IL or the S1BF had no effect on conditioned-cued reinstatement. Furthermore, there was no effect of TTX in any of the tested brain regions on general locomotor activity. CONCLUSIONS. These results support a role for the dorsomedial PFC and the BLA in the circuitry that mediates drug-seeking behavior elicited by cocaine-associated stimuli. Placed within the context of recent studies using drug-primed and stress-induced reinstatement models, we suggest that the dorsomedial PFC may serve as a common link in the neural circuitry underlying reinstatement of drug-seeking behavior.
Evidence has extensively implicated the amygdala in the associative learning process for appetitive reinforcers. Recent interest has focused on the role of the amygdala in the learned associations that occur during the process of drug addiction and relapse. Using an animal model of relapse after chronic cocaine self‐administration, we found that rats reinstate extinguished lever responding for conditioned stimuli (tone + light) previously paired with cocaine or heroin (‘conditioned‐cued reinstatement’). The basolateral amygdala (BLA) complex plays a critical role in this behavior, because permanent lesions or reversible pharmacologic inactivation of the BLA attenuates conditioned‐cued reinstatement without affecting cocaine self‐administration or cocaine‐primed reinstatement. Conditioned‐cued reinstatement appears to be mediated in part by dopamine inputs to the BLA, as intra‐BLA infusion of a dopamine D1 receptor antagonist blocks reinstatement, whereas intra‐BLA infusion of amphetamine potentiates reinstatement. Furthermore, the BLA is also necessary for acquisition of associative learning with cocaine‐paired stimuli. Disruption of neural activity within the BLA by sodium channel blockade or muscarinic receptor blockade just before acquisition of stimulus‐cocaine associations blocks the ability of conditioned stimuli to elicit conditioned‐cued reinstatement after extinction. Together, these results reveal the importance of the amygdala as part of a corticolimbic circuit mediating both the acquisition and the expression of conditioning that plays a critical role in relapse to drug‐seeking behavior.
Pavlovian eyeblink (EB) conditioning was studied in both trace and delay paradigms in rabbits (Oryctolagus cuniculus) with either medial prefrontal cortex (mPFC) lesions or sham lesions. mPFC lesions of prelimbic cortex (Brodmann's Area 32) retarded EB conditioning in the trace but not the delay paradigm. However, this effect was significant only when the conditioned stimulus (CS) was 500 rather than 100 ms in duration. Lesions of the anterior cingulate cortex (Area 24) did not affect EB conditioning in a trace paradigm. Accompanying CS-evoked heart rate slowing was attenuated under all conditions by the mPFC lesions, although this result was not always statistically significant.
1. The effect of covert attention was studied in area 7a of the posterior parietal cortex of rhesus monkeys performing a spatial match-to-sample task. The task required the animals to fixate a central target light, to detect and remember the location of a transient spatial cue, and to respond when one of a series of stimuli appeared at the cued location. Neuronal responses evoked by the visual stimuli were recorded during each behavioral trial. 2. Thirty-eight percent of the neurons isolated and studied in these experiments responded to visual stimuli. The responses of 55% of the neurons tested were suppressed, and 5% enhanced for stimuli presented at the attended location. Responses in the remaining neurons (40%) were unaffected by shifts in attention. 3. Activity in 57% of the suppressed neurons was reduced to rates not significantly different from spontaneous activity. 4. The extent of suppression for individual neurons was often restricted to the attended portion of the receptive field. 5. These data suggest a potential role for these neurons in the redirection of visual attention.
The medial prefrontal cortex (mPFC) plays a critical role in conditioned autonomic adjustments but is not involved in classically conditioned somatomotor responses unless the training conditions include reversal or trace conditioning. The studies showing these effects have all used pretraining lesions. The present study assessed the effects of posttraining lesions on eyeblink (EB) and heart rate (HR) conditioned responses (CRs) in both delay and trace conditioning paradigms in the rabbit (Oryctolagus cuniculus). Posttraining lesions lowered the percentage of EB CRs during retesting compared with pretesting levels for both delay and trace conditioning. Control lesions and pretraining lesions produced no significant effects during retesting. Posttraining lesions had no effect on the HR CR. These findings suggest that a critical mechanism in the mPFC is involved in retrieval of information during EB conditioning but that the mPFC integration of autonomic and somatomotor processes is not critical to this retrieval process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.