In spinor Bose-Einstein condensates, spin-changing collisions are a remarkable proxy to coherently realize macroscopic many-body quantum states. These processes have been, e.g., exploited to generate entanglement, to study dynamical quantum phase transitions, and proposed for realizing nematic phases in atomic condensates. In the same systems dressed by Raman beams, the coupling between spin and momentum induces a spin dependence in the scattering processes taking place in the gas. Here we show that, at weak couplings, such modulation of the collisions leads to an effective Hamiltonian which is equivalent to the one of an artificial spinor gas with spin-changing collisions that are tunable with the Raman intensity. By exploiting this dressed-basis description, we propose a robust protocol to coherently drive the spin-orbit coupled condensate into the ferromagnetic stripe phase via crossing an excited-state quantum phase transition of the effective low-energy model.
We study beyond-mean-field properties of interacting spin-1 Bose gases with synthetic Rashba-Dresselhaus spin-orbit coupling at low energies. We derive a many-body Hamiltonian following a tight-binding approximation in quasi-momentum space, where the effective spin dependence of the collisions that emerges from spin-orbit coupling leads to dominant correlated tunneling processes that couple the different bound states. We discuss the properties of the spectrum of the derived Hamiltonian and its experimental signatures. In a certain region of the parameter space, the system becomes integrable, and its dynamics becomes analogous to that of a spin-1 condensate with spin-dependent collisions. Remarkably, we find that such dynamics can be observed in existing experimental setups through quench experiments that are robust against magnetic fluctuations. :1909.13840v1 [cond-mat.quant-gas]
arXiv
In spinor Bose-Einstein condensates, spin-changing collisions are a remarkable proxy to coherently realize macroscopic many-body quantum states. These processes have been, e.g., exploited to generate entanglement, to study dynamical quantum phase transitions, and proposed for realizing nematic phases in atomic condensates. In the same systems dressed by Raman beams, the coupling between spin and momentum induces a spin dependence in the scattering processes taking place in the gas. Here we show that, at weak couplings, such modulation of the collisions leads to an effective Hamiltonian which is equivalent to the one of an artificial spinor gas with spin-changing collisions that are tunable with the Raman intensity. By exploiting this dressed-basis description, we propose a robust protocol to coherently drive the spin-orbit-coupled condensate into the ferromagnetic stripe phase via crossing a quantum phase transition of the effective low-energy model in an excited state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.