Cystinuria is a classic heritable aminoaciduria that involves the defective transepithelial transport of cystine and dibasic amino acids in the kidney and intestine. Six missense mutations in the human rBAT gene, which is involved in high-affinity transport of cystine and dibasic amino acids in kidney and intestine, segregate with cystinuria. These mutations account for 30% of the cystinuria chromosomes studied. Homozygosity for the most common mutation (M467T) was detected in three cystinuric siblings. Mutation M467T nearly abolished the amino acid transport activity induced by rBAT in Xenopus oocytes. These results establish rBAT as a cystinuria gene.
Cystinuria is a primary inherited aminoaciduria caused by mutations in the genes that encode the two subunits (neutral and basic amino acid transport protein rBAT and b(0,+)-type amino acid transporter 1) of the amino acid transport system b(0,+). This autosomal recessive disorder (in which few cases show dominant inheritance) causes a failure in the reabsorption of filtered cystine and dibasic amino acids in the proximal tubule. The clinical symptoms of this disease are caused by the loss of poorly soluble cystine, which precipitates to form stones. Although rare, the prevalence of cystinuria is sufficiently high that the disease results in a substantial contribution to pediatric renal lithiasis. A thorough understanding of cystine transport processes over the past 15 years and the genetic abnormalities responsible for the disease has led to a new classification of cystinuria and recognition that some cases result from an autosomal dominant etiology with incomplete penetrance. This Review examines the molecular and mechanistic effects of some of the mutations that cause cystinuria based on our current understanding of the structural and cellular biology of system b(0,+). This Review also describes the current treatments to prevent recurrent cystine lithiasis.
The heteromeric amino acid transporters (HATs) are composed of two polypeptides: a heavy subunit (HSHAT) and a light subunit (LSHAT) linked by a disulfide bridge. HSHATs are N-glycosylated type II membrane glycoproteins, whereas LSHATs are nonglycosylated polytopic membrane proteins. The HSHATs have been known since 1992, and the LSHATs have been described in the last three years. HATs represent several of the classic mammalian amino acid transport systems (e.g., L isoforms, y(+)L isoforms, asc, x(c)(-), and b(0,+)). Members of the HAT family are the molecular bases of inherited primary aminoacidurias cystinuria and lysinuric protein intolerance. In addition to the role in amino acid transport, one HSHAT [the heavy subunit of the cell-surface antigen 4F2 (also named CD98)] is involved in other cell functions that might be related to integrin activation. This review covers the biochemistry, human genetics, and cell physiology of HATs, including the multifunctional character of CD98.
Sleeve gastrectomy (SG) is a restrictive bariatric surgery technique that was first used as part of restrictive horizontal gastrectomy in the original Scopinaro type biliopancreatic diversion. Its good results as a single technique have led to a rise in its use, and it is currently the second most performed technique worldwide. SG achieves clearly better results than other restrictive techniques and is comparable in some aspects to the Roux-en-Y gastric bypass, the current gold standard in bariatric surgery. These benefits have been associated with different pathophysiologic mechanisms unrelated to weight loss such as increased gastric emptying and intestinal transit, and activation of hormonal mechanisms such as increased GLP-1 hormone and decreased ghrelin. The aim of this review was to highlight the salient aspects of SG regarding its historical evolution, pathophysiologic mechanisms, main results, clinical applications and perioperative complications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.