A common denominator in the vast majority of processes in the food industry is refrigeration. Such systems guarantee the quality and the requisites of the final product at the expense of high amounts of energy. In this regard, the new Industry 4.0 framework provides the required data to develop new data-based methodologies to reduce such energy expenditure concern. Focusing in this issue, this paper proposes a data-driven methodology which improves the efficiency of the refrigeration systems acting on the load side. The solution approaches the problem with a novel load management methodology that considers the estimation of the individual load consumption and the necessary robustness to be applicable in highly variable industrial environments. Thus, the refrigeration system efficiency can be enhanced while maintaining the product in the desired conditions. The experimental results of the methodology demonstrate the ability to reduce the electrical consumption of the compressors by 17% as well as a 77% reduction in the operation time of two compressors working in parallel, a fact that enlarges the machines life. Furthermore, these promising savings are obtained without compromising the temperature requirements of each load.
Artificial intelligence has bounced into industrial applications contributing several advantages to the field and have led to the possibility to open new ways to solve many actual problems. In this paper, a data-driven performance evaluation methodology is presented and applied to an industrial refrigeration system. The strategy takes advantage of the Multivariate Kernel Density Estimation technique and Self-Organizing Maps to develop a robust method, which is able to determine a near-optimal performance map, taking into account the system uncertainties and the multiple signals involved in the process. A normality model is used to detect and filter non-representative operating samples to subsequently develop a reliable performance map. The performance map allows comparing the plant assessment under the same operating conditions and permits to identify the potential system improvement capabilities. To ensure that the resulting evaluation is trustworthy, a robustness strategy is developed to identify either possible new operation conditions or abnormal situations in order to avoid uncertain assessments. Furthermore, the proposed approach is tested with real industrial plant data to validate the suitability of the method.
One of the main concerns of industry is energy efficiency, in which the paradigm of Industry 4.0 opens new possibilities by facing optimization approaches using data-driven methodologies. In this regard, increasing the efficiency of industrial refrigeration systems is an important challenge, since this type of process consume a huge amount of electricity that can be reduced with an optimal compressor configuration. In this paper, a novel data-driven methodology is presented, which employs self-organizing maps (SOM) and multi-layer perceptron (MLP) to deal with the (PLR) issue of refrigeration systems. The proposed methodology takes into account the variables that influence the system performance to develop a discrete model of the operating conditions. The aforementioned model is used to find the best PLR of the compressors for each operating condition of the system. Furthermore, to overcome the limitations of the historical performance, various scenarios are artificially created to find near-optimal PLR setpoints in each operation condition. Finally, the proposed method employs a forecasting strategy to manage the compressor switching situations. Thus, undesirable starts and stops of the machine are avoided, preserving its remaining useful life and being more efficient. An experimental validation in a real industrial system is performed in order to validate the suitability and the performance of the methodology. The proposed methodology improves refrigeration system efficiency up to 8%, depending on the operating conditions. The results obtained validates the feasibility of applying data-driven techniques for the optimal control of refrigeration system compressors to increase its efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.