Abstract. The enhanced warming trend and precipitation decline in the Mediterranean region make it a climate change hotspot. We compare projections of multiple Coupled Model Intercomparison Project Phase 5 (CMIP5) and Phase 6 (CMIP6) historical and future scenario simulations to quantify the impacts of the already changing climate in the region. In particular, we investigate changes in temperature and precipitation during the 21st century following scenarios RCP2.6, RCP4.5 and RCP8.5 for CMIP5 and SSP1-2.6, SSP2-4.5 and SSP5-8.5 from CMIP6, as well as for the HighResMIP high-resolution experiments. A model weighting scheme is applied to obtain constrained estimates of projected changes, which accounts for historical model performance and inter-independence in the multi-model ensembles, using an observational ensemble as reference. Results indicate a robust and significant warming over the Mediterranean region during the 21st century over all seasons, ensembles and experiments. The temperature changes vary between CMIPs, CMIP6 being the ensemble that projects a stronger warming. The Mediterranean amplified warming with respect to the global mean is mainly found during summer. The projected Mediterranean warming during the summer season can span from 1.83 to 8.49 ∘C in CMIP6 and 1.22 to 6.63 ∘C in CMIP5 considering three different scenarios and the 50 % of inter-model spread by the end of the century. Contrarily to temperature projections, precipitation changes show greater uncertainties and spatial heterogeneity. However, a robust and significant precipitation decline is projected over large parts of the region during summer by the end of the century and for the high emission scenario (−49 % to −16 % in CMIP6 and −47 % to −22 % in CMIP5). While there is less disagreement in projected precipitation than in temperature between CMIP5 and CMIP6, the latter shows larger precipitation declines in some regions. Results obtained from the model weighting scheme indicate larger warming trends in CMIP5 and a weaker warming trend in CMIP6, thereby reducing the difference between the multi-model ensemble means from 1.32 ∘C before weighting to 0.68 ∘C after weighting.
Abstract. The increased warming trend and precipitation decline in the Mediterranean region makes it a climate change hotspot. We compare projections of multiple CMIP5 and CMIP6 historical and scenario simulations to quantify the impacts of the already changing climate in the region. In particular, we investigate changes in temperature and precipitation during the 21st century following scenarios RCP2.6, SSP1-2.6, RCP4.5, SSP2-4.5, RCP8.5 and SSP5-8.5, as well as the HighResMIP high resolution experiments. A model weighting scheme is applied to obtain constrained estimates of projected changes, which accounts for historical model performance and inter-independence of the multi-model ensembles, using an observational ensemble as reference. Results indicate a robust and significant warming over the Mediterranean region along the 21st century over all seasons, ensembles and experiments. The Mediterranean amplified warming with respect to the global mean is mainly found during summer. The temperature changes vary between CMIPs, being CMIP6 the ensemble that projects a stronger warming. Contrarily to temperature projections, precipitation changes show greater uncertainties and spatial heterogeneity. However, a robust and significant precipitation decline is projected over large parts of the region during summer for the high emission scenario. While there is less disagreement in projected precipitation between CMIP5 and CMIP6, the latter shows larger precipitation declines in some regions. Results obtained from the model weighting scheme indicate increases in CMIP5 and reductions in CMIP6 warming trends, thereby reducing the distance between both multi-model ensembles.
<p>The Mediterranean region is often considered a climate change hotspot. State of the art climate projections display a large uncertainty due to factors such as the modeling approach or variability phasing, in particular for projections of the next few decades. With the great amount of climate information from the last Coupled Model Intercomparison Project (CMIP6), it is desirable to constrain the multi-model multi-member ensemble for the near-term future to obtain more robust and better performing projections. We explore different subsetting methods that select those members that better capture the variability at the starting date of the projection&#8217;s study period. To find the best information we explore variations of different parameters in the selection method based on relevant climate drivers in the Mediterranean region. Such parameters are the reference against which the best members are selected, and comprise: the time period used, the constraining regions considered and the variable or metric that drive the constraint. We find that these subsetting methods can improve the accuracy of near-term climate projections for the next 20 years compared to the unconstrained projections. This evaluation of the results allows us to make informed and robust decisions about the near-term future projections based on quality estimates borrowed from climate prediction practices.</p> <p><br /><br /></p>
<p>The Mediterranean has been identified as a climate change hot-spot due to increased warming trends and precipitation decline. Recently, CMIP6 was found to show a higher climate sensitivity than its predecessor CMIP5, potentially further exacerbating related impacts on the Mediterranean region.</p><p>To estimate the impacts of the ongoing climate change on the region, we compare projections of various CMIP5 and CMIP6 experiments and scenarios. In particular, we focus on summer and winter changes in temperature and precipitation for the 21st century under RCP2.6/SSP1-2.6, RCP4.5/SSP2-4.5 and RCP8.5/SSP5-8.5 as well as the high resolution HighResMIP experiments. Additionally, to give robust estimates of projected changes we apply a novel model weighting scheme, accounting for historical performance and inter-independence of the multi-member multi-model ensembles, using ERA5, JRA55 and WFDE5 as observational reference.&#160;</p><p>Our results indicate a significant and robust warming over the Mediterranean during the 21st century irrespective of the used ensemble and experiments. Nevertheless, the often attested amplified Mediterranean warming is only found for summer. The projected changes vary between the CMIP5 and CMIP6, with the latter projecting a stronger warming. For the high emission scenarios and without weighting, CMIP5 indicates a warming between 4 and 7.7&#186;C in summer and 2.7 and 5&#186;C in winter, while CMIP6 projects temperature increases between 5.6 and 9.2&#186;C in summer and 3.2 to 6.8&#186;C in winter until 2081-2100 in respect to 1985-2005. In contrast to temperature, precipitation changes show a higher level of uncertainty and spatial heterogeneity. However, for the high emission scenario, a robust decline in precipitation is projected for large parts of the Mediterranean during summer. First results applying the model weighting scheme indicate reductions in CMIP6 and increases in CMIP5 warming trends, thereby reducing differences between the two ensembles.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.