<p>A rockfall is a rapid mass movement generated by the detachment of a rock volume from the slope that falls, rolls and bounces during its propagation downhill. Rockfalls have great destructive potential due to the high kinetic and impact energies that may reach during the propagation. Rockfalls are frequent instability processes in road cuts, open pit mines and quarries, steep slopes and cliffs. The initial mobilized mass can be either a single massive block or a set of blocks defined by the joints present in the massif. During the propagation, the block or blocks detached may break when impacts against the terrain, producing a distribution of fragments with independent trajectories. Knowledge of the size and trajectory of the blocks resulting from fragmentation is critical for the assessment of the potential damage and the design of protective structures.</p><p>In this contribution, we summarise the main achievements of the RockModels project (BIA2016-75668-P, AEI/FEDER,UE). This project aims at quantifying the risk induced by fragmental rockfalls, by developing quantitative risk assessment methodologies and providing tools to improve its prevention and mitigation. It has three general objectives: i) Explicit identification of unstable rock volumes and stability assessment; ii)Development and validation of a fragmentation model, iii) Rockfall propagation analysis by means of the development of a 3D simulator tool and its calibration.</p><p>The use of geomatic techniques such as terrestrial photogrammetry or from UAV allow the generation of high-resolution 3D models of cliffs and the joint system characterization based on 3D point clouds. The orientation and persistence of joints within the rock mass define the kinematically unstable rock volumes and determine the initial block size distribution.&#160; We inventoried fragmental rockfalls occurred in Spain by obtaining a 3D model, the orthophoto, specific cartographies and detailed volumes measurements to obtain the block size distribution in the deposits of each event. The fragmental rockfalls inventory have been collected in a spatial database using PostGIS and following the INSPIRE directive for natural hazards. This data can be consulted at different scales with a developed Web Map Service (WMS) (https://rockdb.upc.edu/). The inventory is the empirical data used to developed, calibrate and validate the Rockfall Fractal Fragmentation Model proposed, as well as the 3D trajectory simulator RockGIS that incorporates the fragmentation module.</p><p>More empirical data has been obtained by performing 4 real scale fragmentation test in a quarry. The impact of each block and trajectories of the fragments were recorded by several high speed cameras from different points of&#160;view. A program has been implemented to measure the kinematics of each tested block using the high-speed videos. The obtained kinematic parameters have been used for the calibration of the RockGIS simulator. An additional essay was carry out at laboratory to study the effect of the comminution among blocks. The distribution of fragments obtained confirms that the blocks undergoing greater confinement generate a greater number of fragments decreasing their maximum volume.</p>
<p>Consideration of fragmentation during rockfalls is relevant for the assessment of hazard since it affects the number of generated blocks, their trajectories and impact energies, which also depends on the topography. Recently many scholars have paid attention to these phenomena since there are still many uncertainties around fragmentation regarding how mass and energy are distributed after fragmentation and how trajectory dispersion affects risk analysis. We developed a specific fragmentation model (Rockfall Fractal Fragmentation Model), as well as a 3D trajectory simulator called RockGIS with the fragmentation module implemented. In this contribution, we present the calibration of our rockfall trajectory simulator, based on real scale fragmentation tests performed on a quarry.</p><p>The RockGIS model considers a lumped mass approach and accounts block fragmentation upon impact with the terrain. Some improvements have been made on the simulator code regarding the consideration of rotation inside the kinematics of the model and restitution factors. The block size distributions obtained from natural rockfall events inventoried, as well as from the real scale fragmentation tests in a quarry, shows a fractal behaviour. On this way, the fractal fragmentation model implemented in the RockGIS simulator is able to reproduce the observed block size distributions.</p><p>To calibrate the model we used data gathered from a real scale rockfall test performed in a quarry. We calibrate the relations between the impact energy conditions and the fragmentation model parameters to generate the measured fragments size distribution. The initial volume of the tested blocks were measured manually using a tape and the release positions of the blocks were obtained with terrestrial photogrammetry. Both, the volume and spatial distribution of the fragments after each release were measured on the orthophotos obtained from UAV flights. Three calibration criteria were considered: runout distribution, volume distribution and cumulative volume as a function of the runout. Finally, the degree of fragmentation can be adjusted in the simulations allowing the comparison between different possible hazard scenarios (null, moderate, or severe fragmentation).</p><p>Finally, the results of the calibration shows that the RockGIS is able to reproduce the fragmentation behaviour in terms of block size distribution after breakage, as well as the spatial propagation, being a new tool with capabilities to assess the hazard related with fragmental rockfalls and the consequently risk associated.</p><p><span>The RockGIS tool and the fragmentation model based on the data collected from recent rockfall events have been developed within the RockRisk (2014-2016, BIA2013-42582-P) and RockModels (2016-2019, BIA2016-75668-P, AEI/FEDER, UE) projects. Both projects were funded by the Spanish Ministerio de Econom&#237;a y Competitividad.</span></p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.