Building Information Modelling (BIM) is a new process that is spreading in the Architecture, Engineering and Construction field. It allows the creation of virtual building models, which can be linked to numerical data, texts, images, and other types of information. Building components, such as walls, floors, etc. are modelled as "smart objects", i.e. they are defined by numerical parameters, such as dimensions, and are embedded with other kinds of information, such as building materials and properties. Stored data are accessible and modifiable by all different professionals involved in the same project. The BIM process has been developed for new buildings, and it allows to plan and manage the whole building life-cycle. BIM for built heritage has started to be researched recently, and its use is still not widespread. Indeed, built heritage is characterised by complex morphology and non-homogeneous features, which clash with BIM's standardised procedures. Moreover, to date, BIM does not allow fully automated procedures to model heritage buildings. This review focuses on the survey and digitisation phases, which can be seen as the initial phases of application of BIM in conservation projects. It also briefly covers the modelling stage. Here we present the main methodologies developed for BIM for built heritage. Issues about digitisation are also highlighted, principally in connection with the unavailability of automated processes. During the last 10 years, research has led to promising results; for example, videogame interfaces have been used to simulate virtual 3D tours that display in a single interface the 3D model and the database containing metadata, and new software plug-ins have been developed, to easily create "smart objects". Nevertheless, further research is needed to establish how BIM can support the practice of building conservation. There is a gap in BIM's information holding capacities, namely the storage of cultural and historical documentation, as well as monitored and simulated data relevant for preventive conservation. Future work should focus on the development of new tools that will be able to store and share all the relevant metadata.
Fine particulate matter is, on account of its aerodynamic properties and typical composition (especially diesel particulate matter and carbonaceous particles) the particulate pollutant potentially most harmful to cultural heritage, representing an aesthetic issue and an agent of chemical degradation simultaneously. This paper reviews the current knowledge of the life-cycle of fine particulates, focussing on diesel particulate matter from emission to deposition, including its aesthetic and chemical consequences, and draws attention to some imbalances in the current state of research. The currently available measurements are biased towards coarse dust, and information on the consequences of particle deposition is largely restricted to the outdoor environment. More evidence on the chemical effects of the most common types of fine particulate matter in typical indoor materials is needed to enable risk assessment for indoor collections.
The use of VOC analysis to diagnose degradation in modern polymeric museum artefacts is reported. Volatile organic compound (VOC) analysis is a successful method for diagnosing medical conditions but to date has found little application in museums. Modern polymers are increasingly found in museum collections but pose serious conservation difficulties owing to unstable and widely varying formulations. Solid‐phase microextraction gas chromatography/mass spectrometry and linear discriminant analysis were used to classify samples according to the length of time they had been artificially degraded. Accuracies in classification of 50–83 % were obtained after validation with separate test sets. The method was applied to three artefacts from collections at Tate to detect evidence of degradation. This approach could be used for any material in heritage collections and more widely in the field of polymer degradation.
ABSTRACT:This paper analyses the use of BIM in heritage buildings, assessing the state-of-the-art and finding paths for further development. Specifically, this work is part of a broader project, which final aim is to support stakeholders through BIM. Given that humidity is one of the major causes of weathering, being able to detect, depict and forecast it, is a key task. A BIM model of a heritage buildingenhanced with the integration of a weathering forecasting model -will be able to give detailed information on possible degradation patterns, and when they will happen. This information can be effectively used to plan both ordinary and extraordinary maintenance. The Jewel Tower in London, our case study, is digitised using combined laser scanning and photogrammetry, and a virtual model is produced. The point cloud derived from combined laser scanning & photogrammetry is traced out in with Autodesk Revit, where the main volumetry (gross walls and floors) is created with parametric objects. Surface characterisation of the façade is given through renderings. Specifically, new rendering materials have been created for this purpose, based on rectified photos of the Tower. The model is then integrated with moisture data, organised in spreadsheets and linked to it via parametric objects representing the points where measurements had been previously taken. The spatial distribution of moisture is then depicted using Dynamo. This simple exercise demonstrates the potential Dynamo has for condition reporting, and future work will concentrate on the creation of a complex forecasting model to be linked through it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.