BackgroundHigh consumption of fish carries a lower risk of cardiovascular disease as a consequence of dietary omega-3 long chain polyunsaturated fatty acid (n-3 PUFA; especially EPA and DHA) content. A controversy exists about the component/s responsible of these beneficial effects and, in consequence, which is the best proportion between both fatty acids. We sought to determine, in healthy Wistar rats, the proportions of EPA and DHA that would induce beneficial effects on biomarkers of oxidative stress, and cardiovascular disease risk.MethodsFemale Wistar rats were fed for 13 weeks with 5 different dietary supplements of oils; 3 derived from fish (EPA/DHA ratios of 1:1, 2:1, 1:2) plus soybean and linseed as controls. The activities of major antioxidant enzymes (SOD, CAT, GPX, and GR) were determined in erythrocytes and liver, and the ORAC test was used to determine the antioxidant capacity in plasma. Also measured were: C reactive protein (CRP), endothelial dysfunction (sVCAM and sICAM), prothrombotic activity (PAI-1), lipid profile (triglycerides, cholesterol, HDLc, LDLc, Apo-A1, and Apo-B100), glycated haemoglobin and lipid peroxidation (LDL-ox and MDA values).ResultsAfter three months of nutritional intervention, we observed statistically significant differences in the ApoB100/ApoA1 ratio, glycated haemoglobin, VCAM-1, SOD and GPx in erythrocytes, ORAC values and LDL-ox. Supplementation with fish oil derived omega-3 PUFA increased VCAM-1, LDL-ox and plasma antioxidant capacity (ORAC). Conversely, the ApoB100/ApoA1 ratio and percentage glycated haemoglobin decreased.ConclusionsOur results showed that a diet of a 1:1 ratio of EPA/DHA improved many of the oxidative stress parameters (SOD and GPx in erythrocytes), plasma antioxidant capacity (ORAC) and cardiovascular risk factors (glycated haemoglobin) relative to the other diets.