Summary The CRISPR-Cas9 system has successfully been adapted to edit the genome of various organisms. However, our ability to predict the editing outcome at specific sites is limited. Here, we examined indel profiles at over 1,000 genomic sites in human cells and uncovered general principles guiding CRISPR-mediated DNA editing. We find that precision of DNA editing (i.e., recurrence of a specific indel) varies considerably among sites, with some targets showing one highly preferred indel and others displaying numerous infrequent indels. Editing precision correlates with editing efficiency and a preference for single-nucleotide homologous insertions. Precise targets and editing outcome can be predicted based on simple rules that mainly depend on the fourth nucleotide upstream of the protospacer adjacent motif (PAM). Indel profiles are robust, but they can be influenced by chromatin features. Our findings have important implications for clinical applications of CRISPR technology and reveal general patterns of broken end joining that can provide insights into DNA repair mechanisms.
The CRISPR-Cas9 system has successfully been adapted to edit the genome of various organisms.However, our ability to predict editing accuracy, efficacy and outcome at specific sites is limited by an incomplete understanding of how the bacterial system interacts with eukaryotic genomes and DNA repair machineries. Here, we performed the largest comparison of indel profiles to date, examining over one thousand sites in the genome of human cells, and uncovered general principles guiding CRISPR-mediated DNA editing. We find that precision of DNA editing varies considerably among sites, with some targets showing one highly-preferred indel and others displaying a wide range of infrequent indels. Editing precision correlates with editing efficiency, homology-associated end-joining for both insertions and deletions, and a preference for single-nucleotide insertions.Precise targets and the identity of their preferred indel can be predicted based on simple rules that mainly depend on the fourth nucleotide upstream of the PAM sequence. Regardless of precision, site-specific indel profiles are highly robust and depend on both DNA sequence and chromatin features. Our findings have important implications for clinical applications of CRISPR technology and reveal general patterns of broken end-joining that can inform us on DNA repair mechanisms in human cells.
The CRISPR-Cas9 system has revolutionized genome engineering, allowing precise modification of DNA in various organisms. The most popular method for conducting CRISPR-based functional screens involves the use of pooled lentiviral libraries in selection screens coupled with next-generation sequencing. Screens employing genome-scale pooled small guide RNA (sgRNA) libraries are demanding, particularly when complex assays are used. Furthermore, pooled libraries are not suitable for microscopy-based high-content screens or for systematic interrogation of protein function. To overcome these limitations and exploit CRISPR-based technologies to comprehensively investigate epigenetic mechanisms, we have generated a focused sgRNA library targeting 450 epigenetic regulators with multiple sgRNAs in human cells. The lentiviral library is available both in an arrayed and pooled format and allows temporally-controlled induction of gene knock-out. Characterization of the library showed high editing activity of most sgRNAs and efficient knock-out at the protein level in polyclonal populations. The sgRNA library can be used for both selection and high-content screens, as well as for targeted investigation of selected proteins without requiring isolation of knock-out clones. Using a variety of functional assays we show that the library is suitable for both in vitro and in vivo applications, representing a unique resource to study epigenetic mechanisms in physiological and pathological conditions.
Rewiring of cellular programs in malignant cells generates cancer-specific vulnerabilities. Here, using an unbiased screening strategy aimed at identifying non-essential genes required by tumor cells to sustain unlimited proliferative capacity, we identify the Male-Specific Lethal (MSL) acetyltransferase complex as a vulnerability of genetically unstable cancers. We find that disruption of the MSL complex and consequent loss of the associated H4K16ac mark do not substantially alter transcriptional programs, but compromise chromosome integrity and promote chromosomal instability (CIN) that progressively exhausts the proliferative potential of cancer cells through a p53-independent mechanism. This effect is dependent on pre-existing genomic instability and normal cells are insensitive to MSL disruption. Using cell-and patient-derived xenografts from multiple cancer types, we show that excessive CIN induced by MSL disruption inhibits tumor maintenance. Our findings suggest that targeting of MSL may be a valuable means to increase CIN beyond the level tolerated by cancer cells without inducing severe adverse effects in normal tissues.Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.