Excellent fertility and prolificacy have been reported after non-surgical deep uterine transfers of fresh in vivo-derived porcine embryos. Unfortunately, when this technology is used with vitrified embryos, the reproductive performance of recipients is low. For this reason and because the embryos must be stored until they are transferred to the recipient farms, we evaluated the potential application of non-surgical deep uterine transfers with in vivo-derived morulae cultured for 24 h in liquid stage. In Experiment 1, two temperatures (25°C and 37°C) and two media (one fully defined and one semi-defined) were assessed. Morulae cultured in culture medium supplemented with bovine serum albumin and fetal calf serum at 38.5°C in 5% CO2 in air were used as controls. Irrespective of medium, the embryo viability after 24 h of culture was negatively affected (P<0.05) at 25°C but not at 37°C compared with the controls. Embryo development was delayed in all experimental groups compared with the control group (P<0.001). Most of the embryos (95.7%) cultured at 37°C achieved the full or expanded blastocyst stage, and unlike the controls, none of them hatched at the end of culture. In Experiment 2, 785 morulae were cultured in the defined medium at 37°C for 24 h, and the resulting blastocysts were transferred to the recipients (n = 24). Uncultured embryos collected at the blastocyst stage (n = 750) were directly transferred to the recipients and used as controls (n = 25). No differences in farrowing rates (91.7% and 92.0%) or litter sizes (9.0±0.6 and 9.4±0.8) were observed between the groups. This study demonstrated, for the first time, that high reproductive performance can be achieved after non-surgical deep uterine transfers with short-term cultured morulae in a defined medium, which opens new possibilities for the sanitary, safe national and international trade of porcine embryos and the commercial use of embryo transfer in pigs.
The fine mapping of polymorphisms influencing cholesterol (CT), triglyceride (TG), and lipoprotein serum levels in human and mouse has provided a wealth of knowledge about the complex genetic architecture of these traits. The extension of these genetic analyses to pigs would be of utmost importance since they constitute a valuable biological and clinical model for the study of coronary artery disease and myocardial infarction. In the present work, we performed a whole genome scan for serum lipid traits in a half-sib Duroc pig population of 350 individuals. Phenotypic registers included total CT, TG, and low (LDL)-and high (HDL)-density lipoprotein serum concentrations at 45 and 190 days of age. This approach allowed us to identify two genomewide significant quantitative trait loci (QTL) for HDL-to-LDL ratio at 45 days (SSC6, 84 cM) and for TG at 190 days (SSC4, 23 cM) as well as a number of chromosomewide significant QTL. The comparison of QTL locations at 45 and 190 days revealed a notable lack of concordance at these two time points, suggesting that the effects of these QTL are age specific. Moreover, we have observed a considerable level of correspondence among the locations of the most significant porcine lipid QTL and those identified in humans. This finding might suggest that, in mammals, diverse polymorphisms located in a common set of genes are involved in the genetic variation of serum lipid levels.lipoproteins; lipid metabolism; candidate genes IDENTIFICATION of the genetic factors regulating the concentrations of serum lipoproteins has been a major goal in the prevention and treatment of atherosclerosis. A tremendous effort has been made in this direction by using approaches that combine whole genome scans with information generated by gene expression and bioinformatic analyses (76,81,82). In humans, Ͼ100 quantitative trait loci (QTL) influencing high (HDL)-and low (LDL)-density lipoprotein levels as well as triglyceride (TG) concentrations have been found (82). Moreover, the comparison of mouse and human genomic data has shown that LDL, HDL, and TG QTL display a striking positional concordance in these two mammalian species (80 -82).The inclusion of additional mammalian genomes in this human-mouse QTL comparative framework would yield great benefits in the search of genes influencing susceptibility to atherosclerosis. Pigs are an interesting experimental model to tackle this issue for several reasons. First, pigs have been used as a biomedical model of human diseases for decades, with a special impact on those related to myocardial infarction, cerebral ischemia, and atherosclerosis (44). Familial hypercholesterolemia has been reported in pigs, and, unlike other model species, affected individuals develop atherosclerotic lesions in the coronary vasculature that closely match those observed in humans, suggesting that atherosclerosis shares a common pathogenesis in both species (31). Moreover, the existence of a relevant amount of additive genetic variability for serum lipid traits in pigs has been demo...
Because feed is the major cost to pork production, management practices and breeding strategies are aimed at optimizing feed intake. Knowledge about the shape of feed intake and feeding behavior curves may be of interest for optimization of lean meat production. This study investigated trends based on daily measurements of feeding behavior in 200 Duroc barrows, originating from 5 sires and 200 dams, during growth. Daily values were examined between 88 and 188 d of age. Furthermore, phenotypic correlations between feeding length and feeding rate, and feeding frequency, feed intake, residual feed intake, growth rate, and rate of fat deposition were investigated for a period between 95 and 175 d of age. No differences were observed between sires for parameter estimates of a curvilinear function fitted to data on feeding length as a function of age, but the effect of sire was significant (P < 0.01) for values at individual ages up to 132 d of age. Feeding rate (feed ingested for each minute spent eating) increased in a linear fashion with age (average R(2) = 0.80) and differently so for different sires (P < 0.05 for the intercept and P < 0.01 for the regression coefficient). Because the increase in BW is linear over this time period (average R(2) = 0.99), the results suggest that feeding rate increased with increased BW and is related to the physical capacity for feed intake. Results indicate that pigs that ate faster also ate more (r = 0.29, P < 0.001), grew faster (r = 0.40, P < 0.001), and grew fatter (r = 0.28, P < 0.001), but had no greater or lower residual feed intake (r = -0.01). The linear regression slope of feeding rate on age seemed inherent to the individual and was correlated with feed intake but not with residual feed intake. Feeding length may be selected for in order to regulate absolute feed intake at different stages of growth.
This study aimed to evaluate the effect of recipient-donor estrous cycle synchrony on recipient reproductive performance after nonsurgical deep-uterine (NsDU) embryo transfer (ET). The transfers (N=132) were conducted in recipients sows that started estrus 24 h before (–24 h; N=9) or 0 h (synchronous; N=31), 24 h (+24 h; N=74) or 48 h (+48 h; N=18) after the donors. A total of 30 day 5 morulae or day 6 blastocysts (day 0=onset of estrus) were transferred per recipient. The highest farrowing rates (FRs) were achieved when estrus appeared in recipients 24 h later than that in the donors (81.1%), regardless of the embryonic stage used for the transfers. The FR notably decreased (P<0.05) when recipients were –24 h asynchronous (0%), synchronous (61.3%) or +48 h asynchronous (50%) relative to the donors. No differences in litter size (LS) and piglet birth weights were observed among the synchronous and +24 h or +48 h asynchronous groups. While a +24 h asynchronous recipient was suitable for transfers performed with either morulae (FR, 74.3%; LS, 9.2 ± 0.6 piglets) or blastocysts (FR, 84.6%; LS, 9.8 ± 0.6 piglets), a + 48 h asynchronous recipient was adequate for blastocysts (FR, 87.5%; LS, 10.4 ± 0.7 piglets) but not for morulae (FR, 30.0%; LS, 7.3 ± 2.3 piglets). In conclusion, this study confirms the effectiveness of the NsDU-ET technology and shows that porcine embryos tolerate better a less advanced uterine environment if they are nonsurgically transferred deep into the uterine horn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.