First results are presented for ocean surface wind speed retrieval from reflected GPS signals measured by the low Earth orbiting UK TechDemoSat‐1 satellite (TDS‐1). Launched in July 2014, TDS‐1 provides the first new spaceborne Global Navigation Satellite System‐Reflectometry (GNSS‐R) data since the pioneering UK‐Disaster Monitoring Mission (UK‐DMC) experiment in 2003. Examples of onboard‐processed delay‐Doppler maps reveal excellent data quality for winds up to 27.9 m/s. Collocated Advanced Scatterometer (ASCAT) winds are used to develop and evaluate a wind speed algorithm based on signal‐to‐noise ratio (SNR) and the bistatic radar equation. For SNRs greater than 3 dB, wind speed is retrieved without bias and a precision around 2.2 m/s between 3 and 18 m/s even without calibration. Exploiting lower SNR signals, however, requires good knowledge of the antenna beam, platform attitude, and instrument gain setting. This study demonstrates the capabilities of low‐cost, low‐mass, and low‐power GNSS‐R receivers ahead of their launch on the NASA Cyclone GNSS (CYGNSS) constellation in 2016.
GEROS-ISS stands for GNSS REflectometry, radio occultation, and scatterometry onboard the International Space Station (ISS). It is a scientific experiment, successfully proposed to the European Space Agency in 2011. The experiment as the name indicates will be conducted on the ISS. The main focus of GEROS-ISS is the dedicated use of signals from the currently available Global Navigation Satellite Systems (GNSS) in L-band for remote sensing of the Earth with a focus to study climate change. Prime mission objectives are the determination of the altimetric sea surface height of the oceans and of the ocean surface mean square slope, which is related to sea roughness and wind speed. These geophysical parameters are derived using reflected GNSS signals (GNSS reflectometry, GNSS-R). Secondary mission goals include atmosphere/ionosphere sounding using refracted GNSS signals (radio occultation, GNSS-RO) and remote sensing of land surfaces using GNSS-R. The GEROS-ISS mission objectives and its design, the current status, and ongoing activities are reviewed and selected scientific and technical results of the GEROS-ISS preparation phase are described.
An assessment of non-geophysical effects in spaceborne global navigation satellite system reflectometry (GNSS-R) data from the UK TechDemoSat-1 (TDS-1) mission is presented. TDS-1 was launched in July 2014 and provides the first new spaceborne GNSS-R data since the pioneering UK-disaster monitoring constellation experiment in 2003. Non-geophysical factors evaluated include ambient L-band noise, instrument operating mode, and platform-related parameters. The findings are particularly relevant to users of uncalibrated GNSS-R signals for the retrieval of geophysical properties of the Earth surface. Substantial attitude adjustments of the TDS-1 platform are occasionally found to occur that introduce large uncertainties in parts of the TDS-1 GNSS-R dataset, particularly for specular points located outside the main beam of the nadir antenna where even small attitude errors can lead to large inaccuracies in the geophysical inversion. Out of eclipse however, attitude adjustments typically remain smaller than 1.5°, with larger deviations of up to 10°affecting less than 5% of the overall sun-lit data. Global maps of L1 ambient noise are presented for both automatic and programmed gain modes of the receiver, revealing persistent L-band noise hotspots along the Equator that can reach up to 2.5 dB, most likely associated with surface reflection of signals from other GNSS transmitters and constellations. Sporadic high-power noise events observed in certain regions point to sources of human origin. Relevant conclusions of this study are that platform attitude knowledge is essential and that radiometric calibration of GNSS-R signals should be used whenever possible. Care should be taken when considering using noise measurements over the equatorial oceans for calibration purposes, as ambient noise and correlated noise in delay-Doppler maps both show more variation than might be expected over these regions.Index Terms-Ambient noise, attitude control, global navigation satellite system (GNSS), GNSS reflectometry (GNSS-R), GNSS remote sensing, ocean remote sensing, radiofrequency interference (RFI), spaceborne radar, TechDemoSat-1 (TDS-1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.