Strong circularly polarized luminescence (CPL) at 1550 nm is reported for lanthanide complexes supported by Vanol; these are the first examples of coordination of Vanol to lanthanides. A change in the ligand design from a 1,1’‐bi‐2‐naphthol (in Binol) to a 2,2’‐bi‐1‐naphthol (in Vanol) results in significantly improved dissymmetry factors for (Vanol)3ErNa3 (|glum|=0.64) at 1550 nm. This is among the highest reported dissymmetry factors to date in the telecom C‐band region, and among the highest for any lanthanide complexes. Comparative solid‐state structural analysis of (Vanol)3ErNa3 and (Binol)3ErNa3 suggests that a less distorted geometry around the metal center is in part responsible for the high chiroptical metrics of (Vanol)3ErNa3. This phenomenon was further evidenced in the analogous ytterbium complex (Vanol)3YbNa3 that also exhibit a significantly improved dissymmetry factor (|glum|=0.21). This confirms and generalizes the same observation that was made in other visibly emitting, six‐coordinate lanthanide complexes. Due to their strong CPL at 1550 nm, the reported complexes are potential candidates for applications in quantum communication technologies. More importantly, our structure‐CPL activity relationship study provides guidance towards the generation of even better near‐infrared CPL emitters.
Perovskite materials passivated by chiral ligands have recently shown unique chiroptical activity with promising optoelectronic applications. However, the ligands have been limited to chiral amines. Here, chiral phosphate molecules have...
Building on a highly efficient synthesis of pyrrole-appended isocorroles, we have worked out conditions for manganese, palladium, and platinum insertion into free-base 5/10-(2-pyrrolyl)-5,10,15-tris(4-methylphenyl)isocorrole, H 2 [5/10-(2-py)-TpMePiC]. Platinum insertion proved exceedingly challenging but was finally accomplished with cis-Pt(PhCN) 2 Cl 2 . All the complexes proved weakly phosphorescent in the near-infrared under ambient conditions, with a maximum phosphorescence quantum yield of 0.1% observed for Pd[5-(2-py)TpMePiC]. The emission maximum was found to exhibit a strong metal ion dependence for the 5-regioisomeric complexes but not for the 10-regioisomers. Despite the low phosphorescence quantum yields, all the complexes were found to sensitize singlet oxygen formation with moderate to good efficiency, with singlet oxygen quantum yields ranging over 21−52%. With significant absorption in the near-infrared and good singlet oxygen-sensitizing ability, metalloisocorroles deserve examination as photosensitizers in the photodynamic therapy of cancer and other diseases.
We report the use of polymer N-heterocyclic carbenes (NHCs) to control the microenvironment surrounding metal nanocatalysts, thereby enhancing their catalytic performance in CO2 electroreduction. Three polymer NHC ligands were...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.