Diverse bacterial and viral pathogens induce actin polymerization in the cytoplasm of host cells to facilitate infection. Here, we describe a pathogenic mechanism for promoting dynamic actin assembly in the nucleus to enable viral replication. The baculovirus Autographa californica multiple nucleopolyhedrovirus induced nuclear actin polymerization by translocating the host actin-nucleating Arp2/3 complex into the nucleus, where it was activated by p78/83, a viral Wiskott-Aldrich syndrome protein (WASP)-like protein. Nuclear actin assembly by p78/83 and Arp2/3 complex was essential for viral progeny production. Recompartmentalizing dynamic host actin may represent a conserved mode of pathogenesis and reflect viral manipulation of normal functions of nuclear actin.
SummarySpotted fever group Rickettsia are obligate intracellular pathogens that exploit the host cell actin cytoskeleton to promote motility and cell-to-cell spread. Although other pathogens such as Listeria monocytogenes use an Arp2/3 complex-dependent nucleation mechanism to generate comet tails consisting of Ybranched filament arrays, Rickettsia polymerize tails consisting of unbranched filaments by a previously unknown mechanism. We identified genes in several Rickettsia species encoding proteins (termed RickA) with similarity to the WASP family of Arp2/3-complex activators. Rickettsia rickettsii RickA activated both the nucleation and Y-branching activities of the Arp2/ 3 complex like other WASP-family proteins, and was sufficient to direct the motility of microscopic beads in cell extracts. Actin tails generated by RickA-coated beads consisted of Y-branched filament networks. These data suggest that Rickettsia use an Arp2/3 complex-dependent actin-nucleation mechanism similar to that of other pathogens. We propose that additional Rickettsia or host factors reorganize the Y-branched networks into parallel arrays in a manner similar to a recently proposed model of filopodia formation.
It is generally accepted that the growth rate of an organism is modulated by the availability of nutrients. One common mechanism to control cellular growth is through the global down-regulation of cap-dependent translation by eIF4E-binding proteins (4E-BPs). Here, we report evidence for a novel mechanism that allows eukaryotes to coordinate and selectively couple transcription and translation of target genes in response to a nutrient and growth signaling cascade. The Drosophila insulin-like receptor (dINR) pathway incorporates 4E-BP resistant cellular internal ribosome entry site (IRES) containing mRNAs, to functionally couple transcriptional activation with differential translational control in a cell that is otherwise translationally repressed by 4E-BP. Although examples of cellular IRESs have been previously reported, their critical role mediating a key physiological response has not been well documented. Our studies reveal an integrated transcriptional and translational response mechanism specifically dependent on a cellular IRES that coordinates an essential physiological signal responsible for monitoring nutrient and cell growth conditions.[Keywords: 4E-BP; Foxo; IRES; insulin receptor] Supplemental material is available at http://www.genesdev.org.
Summary Historically, developmental stage and tissue-specific patterns of gene expression were assumed to be determined primarily by DNA regulatory sequences and their associated activators, while the general transcription machinery including core promoter recognition complexes, coactivators, and chromatin modifiers was held to be invariant. New evidence suggests that significant changes in these general transcription factors including, TFIID, BAF, and Mediator may facilitate global changes in cell-type-specific transcription.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.