Fast anterograde transport of membrane-bound organelles delivers molecules synthesized in the neuronal cell body outward to distant synapses. Identification of the molecular ''zipcodes'' on organelles that mediate attachment and activation of microtubulebased motors for this directed transport is a major area of inquiry. Here we identify a short peptide sequence (15 aa) from the cytoplasmic C terminus of amyloid precursor protein (APP-C) sufficient to mediate the anterograde transport of peptide-conjugated beads in the squid giant axon. APP-C beads travel at fast axonal transport rates (0.53 m͞s average velocity, 0.9 m͞s maximal velocity) whereas beads coupled to other peptides coinjected into the same axon remain stationary at the injection site. This transport appears physiologic, because it mimics behavior of endogenous squid organelles and of beads conjugated to C99, a polypeptide containing the full-length cytoplasmic domain of amyloid precursor protein (APP). Beads conjugated to APP lacking the APP-C domain are not transported. Coinjection of APP-C peptide reduces C99 bead motility by 75% and abolishes APP-C bead motility, suggesting that the soluble peptide competes with protein-conjugated beads for axoplasmic motor(s). The APP-C domain is conserved (13͞15 aa) from squid to human, and peptides from either squid or human APP behave similarly. Thus, we have identified a conserved peptide zipcode sufficient to direct anterograde transport of exogenous cargo and suggest that one of APP's roles may be to recruit and activate axonal machinery for endogenous cargo transport.fast axonal transport ͉ herpes simplex virus ͉ kinesin anterograde transport ͉ squid giant axon
SummaryAnterograde transport of herpes simplex virus (HSV) from its site of synthesis in the neuronal cell body out the neuronal process to the mucosal membrane is crucial for transmission of the virus from one person to another, yet the molecular mechanism is not known. By injecting GFP-labeled HSV into the giant axon of the squid, we reconstitute fast anterograde transport of human HSV and use this as an assay to uncover the underlying molecular mechanism. HSV travels by fast axonal transport at velocities four-fold faster (0.9 µ µ µ µ m/sec average, 1.2 µ µ µ µ m/sec maximal) than that of mitochondria moving in the same axon (0.2 µ µ µ µ m/sec) and ten-fold faster than negatively charged beads (0.08 µ µ µ µ m/sec). Transport of HSV utilizes cellular transport mechanisms because it appears to be driven from inside cellular membranes as revealed by negative stain electron microscopy and by the association of TGN46, a component of the cellular secretory pathway, with GFP-labeled viral particles. Finally, we show that amyloid precursor protein (APP), a putative receptor for the microtubule motor, kinesin, is a major component of viral particles, at least as abundant as any viral encoded protein, while another putative motor receptor, JIP 1/2, is not detected. Conventional kinesin is also associated with viral particles. This work links fast anterograde transport of the common pathogen, HSV, with the neurodegenerative Alzheimer's disease. This novel connection should prompt new ideas for treatment and prevention strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.