We report a rational investigation of the selective synthesis of poly(cyclohexene carbonate) from CO 2 and cyclohexene oxide by using commercially available Lewis acids with nontoxic metal centers. After a preliminary screening, we focused on the use of zinc salts, and the effect of the pressure, the temperature, the catalyst loading, and the presence of cocatalyst or a solvent on the reaction yields, selectivity, and molar masses was evaluated for selected catalytic platforms. Thus, we found that ZnTosylate in catalytic amounts under solvent-and cocatalyst-free conditions enables the selective synthesis of poly(cyclohexene carbonate) with a molecular weight of about 62.1 kg/mol with about 70% yields at 343 K and 4 MPa. To the best of our knowledge, this is a rare example of high molar mass polycyclohexene carbonates that are moreover obtained under solvent-and cocatalyst-free conditions. The high selectivity of ZnTos towards the formation of poly(cyclohexene carbonate) was interpreted, thanks to in situ FTIR spectroscopy and DFT calculations, as resulting from its ability to coactivate CO 2 . Abstract:We report a rational investigation of the selective synthesis of poly(cyclohexene carbonate) from CO2 and cyclohexene oxide by using commercially available Lewis acids with nontoxic metal centers. After a preliminary screening, we focused on the use of zinc salts, and the effect of the pressure, the temperature, the catalyst loading, and the presence of cocatalyst or a solvent on the reaction yields, selectivity, and molar masses was evaluated for selected catalytic platforms. Thus, we found that ZnTosylate in catalytic amounts under solvent-and cocatalyst-free conditions enables the selective synthesis of poly(cyclohexene carbonate) with a molecular weight of about 62.1 kg/mol with about 70% yields at 343 K and 4 MPa. To the best of our knowledge, this is a rare example of high molar mass polycyclohexene carbonates that are moreover obtained under solvent-and cocatalyst-free conditions. The high selectivity of ZnTos towards the formation of poly(cyclohexene carbonate) was interpreted, thanks to in situ FTIR spectroscopy and DFT calculations, as resulting from its ability to coactivate CO2.
RESUME L'action de 1'acetate d'hydrazine est fitudiSe sur une seYie de glycals acfetylSs. II est dSmontrS que la d §ac §tylation selective observed en position-4 pour le 3,4-di-fl-ac §tyl-D-xylal existe aussi pour les homologues D-glucal, D-galactal et L-rhamnal. On montre en outre que ce rSsultat n'est pas explicable par une migration de groupe ac §tyle au cours de la reaction. ABSTRACT Hydrazine acetate is shown to effect selective deacetylation on peracetylated glycals like D-xylal, D-glucal, D-galactal and L-rhamnal. It is demonstrated that the observed selectivity on the -4 position cannot be explained by acetyl migration during the reaction.
A one-pot multicomponent green process is investigated for the synthesis of perfluoroalkylated cyclic carbonate which merges the photo-promoted Atom Transfer Radical Addition (ATRA) of a perfluoroalkyl iodide (Rf-I) onto allyl alcohols with the Lewis-base-promoted carboxylative cyclization. The evolution of the complex mixture during the reaction was monitored by in situ ATR-IR and Raman spectroscopies that provided insights into the reaction mechanism. The effect on the kinetics and the carbonate yields of key parameters such as the stoichiometry of reagents, the nature of the Lewis base and the solvent, the temperature and the pressure were evaluated. It was found that high yields were obtained using strong Lewis bases that played both the role of activating the allyl alcohol for the generation of the allyl carbonate in the presence of CO2 and promoting the ATRA reaction through the activation of C4F9I by halogen bonding. This protocol was also extended to various unsaturated alcohols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.