Four commercially available esterases were screened for their ability to esterify ferulic acid (4-hydroxy-3-methoxy cinnamate). Novozym ® 435 was found to be the only one of those screened to convert ferulic acid to ethyl and octyl ferulate at 20 and 14% yields, respectively. The highest percentage conversion was obtained using a 1:1 mole ratio of alcohol to ferulic acid in stirred batch reactions in anhydrous 2-methyl-2-propanol at 60°C using one equivalent (wt/wt based on ferulic acid) of Novozym 435. Increased water content and a higher alcohol/ethyl ferulate ratio had adverse effects on the lipase-catalyzed esterification. The Novozym 435 activity was tested in less polar solvents (anhydrous toluene and hexane) by monitoring the alcoholysis of ethyl ferulate with 1-octanol, which resulted in a 50% yield of octyl ferulate. The alcoholysis was improved to 83% by applying a 16 mm Hg vacuum for 5 min every 24 h to remove the ethanol co-product. The optimal alcoholysis parameters were applied to the alcoholysis of ethyl ferulate with monoolein and the transesterification with triolein. The transesterification of ethyl ferulate with triolein in anhydrous toluene produced a combined 44% yield of ferulyl monoolein and ferulyl diolein, a 20% greater yield than that obtained for alcoholysis using monoolein. The highest yield, 77%, of ferulyl monoolein and ferulyl diolein was achieved using a threefold excess of neat triolein. The lipase-catalyzed transesterification of ethyl ferulate with triolein appears to be a technically feasible route to ferulyl-substituted acylglycerols, which are potentially useful sunscreen ingredients.
The transesterification reaction of N-acetyl-L-phenylalanine ethyl ester with 1-propanol catalyzed by alpha-chymotrypsin was examined in the ionic liquids 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF(6)]) and 1-octyl-3-methylimidazolium hexafluorophosphate ([omim][PF(6)]), and in combination with supercritical carbon dioxide (SC-CO(2)). The activity of alpha-chymotrypsin was studied to determine whether trends in solvent polarity, water activity, and enzyme support properties, observed with this enzyme in conventional organic solvents, hold for the novel environment provided by ionic liquids. alpha-Chymotrypsin freeze-dried with K(2)HPO(4), KCl, or poly(ethylene glycol) demonstrated no activity in [bmim][PF(6)] or [omim][PF(6)] at very low water concentrations, but moderate transesterification rates were observed with the ionic liquids containing 0.25% water (v/v) and higher. However, the physical complexation of the enzyme with poly(ethylene glycol) or KCl did not substantially stimulate activity in the ionic liquids, unlike that observed in hexane or isooctane. Activities were considerably higher in [omim][PF(6)] than [bmim][PF(6)]. Added water was not necessary for enzyme activity when ionic liquids were combined with SC-CO(2). These results indicate that [bmim][PF(6)] and [omim][PF(6)] provide a relatively polar environment, which can be modified with nonpolar SC-CO(2) to optimize enzyme activity.
The acyl migration kinetics of neat 2-monoacylglycerol (2-MAG) to form 1-MAG was determined using 1 H NMR spectroscopy to monitor the b-proton integration ratios of the two species over time. 2-MAG was synthesized by the Novozym 435-catalyzed alcoholysis of soybean oil and isolated by solvent extraction or molecular distillation at a mole fraction (X 2-MAG ) of 0.94 relative to total MAG. The kinetics parameters of the neat 2-MAG acyl migration were investigated over the temperature range of 23-80°C. The 2-MAG mol fraction remained unchanged at 23°C over the course of 168 h and reached an equilibrium of X 2-MAG = 0.09 at only 80°C. Modeling of the kinetics data revealed a 2-MAG half life (t 1/2 ) of 3,500 and 22.8 h at 23 and 80°C, respectively, with an activation energy of 79.0 ± 6.5 kJ mol -1 . The use of 1 H NMR spectroscopy proved an expedient method for monitoring the acyl migration in 2-MAG compared to other reported methods (e.g. GC, HPLC, and 13 C-NMR spectroscopy), requiring no sample manipulation and minimizing the deleterious effects of high temperatures and solvent exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.