Background and Purpose-Continuous arterial spin-labeled perfusion MRI (CASL-PI) uses electromagnetically labeled arterial blood water as a diffusible tracer to noninvasively measure cerebral blood flow (CBF). We hypothesized that CASL-PI could detect perfusion deficits and perfusion/diffusion mismatches and predict outcome in acute ischemic stroke. Methods-We studied 15 patients with acute ischemic stroke within 24 hours of symptom onset. With the use of a 6-minute imaging protocol, CASL-PI was measured at 1.5 T in 8-mm contiguous supratentorial slices with a 3.75-mm in-plane resolution. Diffusion-weighted images were also obtained. Visual inspection for perfusion deficits, perfusion/diffusion mismatches, and effects of delayed arterial transit was performed. CBF in predetermined vascular territories was quantified by transformation into Talairach space. Regional CBF values were correlated with National Institutes of Health Stroke Scale (NIHSS) score on admission and Rankin Scale (RS) score at 30 days. Results-Interpretable CASL-PI images were obtained in all patients. Perfusion deficits were consistent with symptoms and/or diffusion-weighted imaging abnormalities. Eleven patients had hypoperfusion, 3 had normal perfusion, and 1 had relative hyperperfusion. Perfusion/diffusion mismatches were present in 8 patients. Delayed arterial transit effect was present in 7 patients; serial imaging in 2 of them showed that the delayed arterial transit area did not succumb to infarction. CBF in the affected hemisphere correlated with NIHSS and RS scores (Pϭ0.037 and Pϭ0.003, Spearman rank correlation). The interhemispheric percent difference in middle cerebral artery CBF correlated with NIHSS and RS scores (Pϭ0.007 and Pϭ0.0002, respectively).
Conclusions-CASL-PI
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.