We report the development of a diffuse reflecting material with measured reflectivity values as high as 0.99919 at 532 nm and 0.99686 at 266 nm. This material is a high-purity fumed silica, or quartz powder, with particle sizes on the order of 40 nm. We demonstrate that this material can be used to produce surfaces with nearly Lambertian behavior, which in turn can be used to form the inner walls of high-reflectivity integrating cavities. Light reflecting off such a surface penetrates into the material. This means there will be an effective "wall time" for each reflection off the walls in an integrating cavity. We measure this wall time and show that it can be on the order of several picoseconds. Finally, we introduce a technique for absorption spectroscopy in an integrating cavity based on cavity ring-down spectroscopy. We call this technique integrating cavity ring-down spectroscopy.
In June 2011, a multi-sensor airborne remote sensing campaign was flown at the Virginia Coast Reserve Long Term Ecological Research 10 site with coordinated ground and water calibration and validation (cal/val) measurements. Remote sensing imagery acquired during the ten day exercise included hyperspectral imagery (CASI-1500), topographic LiDAR, and thermal infra-red imagery, all simultaneously from the same aircraft. Airborne synthetic aperture radar (SAR) data acquisition for a smaller subset of sites occurred in September 2011 (VCR'11). Focus areas for VCR'11 were properties of beaches and tidal flats and barrier island vegetation and, in the water column, shallow water bathymetry. On land, cal/val emphasized tidal flat and beach grain size distributions, density, moisture content, and other geotechnical properties such as shear and bearing strength (dynamic deflection modulus), which were related to hyperspectral BRDF measurements taken with the new NRL Goniometer for Outdoor Portable Hyperspectral Earth Reflectance (GOPHER). This builds on our earlier work at this site in 2007 related to beach properties 3 and shallow water bathymetry 2. A priority for VCR'11 was to collect and model relationships between hyperspectral imagery, acquired from the aircraft at a variety of different phase angles, and geotechnical properties of beaches and tidal flats. One aspect of this effort was a demonstration that sand density differences are observable and consistent in reflectance spectra from GOPHER data, in CASI hyperspectral imagery, as well as in hyperspectral goniometer measurements conducted in our laboratory after VCR'11.
We report experimental results from a flow-through integrating cavity absorption meter. The operating range of the device is from 0.004 m(-1) to over 80 m(-1) of absorption. Absorption coefficients have been measured with 8% or less change in the presence of over 200 m(-1) of scattering in the medium. The instrument signal has been shown to be independent of flow rate up to 20 liters/min and thus independent of turbulence. This large operational range along with the ability to measure absorption independently of adverse scattering affects allows the instrument to be utilized in a wide range of environmental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.