Obesity is the major contributing factor for the increased prevalence of type 2 diabetes (T2D) in recent years. Sustained positive influx of lipids is considered to be a precipitating factor for beta cell dysfunction and serves as a connection between obesity and T2D. Importantly, fatty acids (FA), a key building block of lipids, are a double‐edged sword for beta cells. FA acutely increase glucose‐stimulated insulin secretion through cell‐surface receptor and intracellular pathways. However, chronic exposure to FA, combined with elevated glucose, impair the viability and function of beta cells in vitro and in animal models of obesity (glucolipotoxicity), providing an experimental basis for the propensity of beta cell demise under obesity in humans. To better understand the two‐sided relationship between lipids and beta cells, we present a current view of acute and chronic handling of lipids by beta cells and implications for beta cell function and health. We also discuss an emerging role for lipid droplets (LD) in the dynamic regulation of lipid metabolism in beta cells and insulin secretion, along with a potential role for LD under nutritional stress in beta cells, and incorporate recent advancement in the field of lipid droplet biology.
AbstractsRodent islets are widely used to study the pathophysiology of beta cells and islet function, however, structural and functional differences exist between human and rodent islets, highlighting the need for human islet studies. Human islets are highly variable, deteriorate during culture, and are difficult to genetically modify, making mechanistic studies difficult to conduct and reproduce. To overcome these limitations, we tested whether pseudoislets, created by dissociation and reaggregation of islet cell suspensions, allow for assessment of dynamic islet function after genetic modulation. Characterization of pseudoislets cultured for 1 week revealed better preservation of first‐phase glucose‐stimulated insulin secretion (GSIS) compared with cultured‐intact islets and insulin secretion profiles similar to fresh islets when challenged by glibenclamide and KCl. qPCR indicated that pseudoislets are similar to the original islets for the expression of markers for cell types, beta cell function, and cellular stress with the exception of reduced proinflammatory cytokine genes (IL1B, CCL2, CXCL8). The expression of extracellular matrix markers (ASPN, COL1A1, COL4A1) was also altered in pseudoislets compared with intact islets. Compared with intact islets transduced by adenovirus, pseudoislets transduced by lentivirus showed uniform transduction and better first‐phase GSIS. Lastly, the lentiviral‐mediated delivery of short hairpin RNA targeting glucokinase (GCK) achieved significant reduction of GCK expression in pseudoislets as well as marked reduction of both first and second phase GSIS without affecting the insulin secretion in response to KCl. Thus, pseudoislets are a tool that enables efficient genetic modulation of human islet cells while preserving insulin secretion.
We recently reported that mitoquinone (mitoQ, 500 μmol/L) added to drinking water of C57BL/6J mice attenuated weight gain and reduced oxidative stress when administered to high‐fat (HF) fed mice. Here, we examined the effects of mitoQ administered to HF fed mice on pancreatic islet morphology, dynamics of insulin secretion, and islet mitochondrial metabolism. C57BL/6J mice were fed HF for 130 days while we administered vehicle (cyclodextrin [CD]) or mitoQ added to the drinking water at up to 500 μmol/L. MitoQ‐treated mice vs vehicle gained significantly less weight, expended significantly more energy as determined by indirect calorimetry, and trended to consume less (nonsignificant) food. As we and others reported before, mitoQ‐treated mice drank less water but showed no difference in percent body fluid by nuclear magnetic resonance. Circulating insulin and glucose‐stimulated insulin secretion by isolated islets were decreased in mitoQ‐treated mice while insulin sensitivity (plasma insulin x glucose) was greater. Islet respiration as basal oxygen consumption (OCR), OCR directed at ATP synthesis, and maximal uncoupled OCR were also reduced in mitoQ‐treated mice. Quantitative morphologic studies revealed that islet size was reduced in the mitoQ‐treated mice while visual inspection of histochemically stained sections suggested that mitoQ reduced islet lipid peroxides. MitoQ markedly improved liver function as determined by plasma alanine aminotransferase. In summary, mitoQ treatment reduced the demand for insulin and reduced islet size, likely consequent to the action of mitoQ to mitigate weight gain and improve liver function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.