Odontogenic cysts that can be problematic because of recurrence and/or aggressive growth include odontogenic keratocyst (OKC), calcifying odontogenic cyst, and the recently described glandular odontogenic cyst. The OKC has significant growth capacity and recurrence potential and is occasionally indicative of the nevoid basal cell carcinoma syndrome. There is also an orthokeratinized variant, the orthokeratinized odontogenic cyst, which is less aggressive and is not syndrome associated. Ghost cell keratinization, which typifies the calcifying odontogenic cyst, can be seen in solid lesions that have now been designated odontogenic ghost cell tumor. The glandular odontogenic cyst contains mucous cells and ductlike structures that may mimic central mucoepidermoid carcinoma. Several odontogenic tumors may provide diagnostic challenges, particularly the cystic ameloblastoma. Identification of this frequently underdiagnosed cystic tumor often comes after one or more recurrences and a destructive course. Other difficult lesions include malignant ameloblastomas, calcifying epithelial odontogenic tumor, squamous odontogenic tumor, and clear-cell odontogenic tumor. Histologic identification of myxofibrous lesions of the jaws (odontogenic myxoma, odontogenic fibroma, desmoplastic fibroma) is necessary to avoid the diagnostic pitfall of overdiagnosis of similar-appearing follicular sacs and dental pulps. Fibroosseous lesions of the jaws show considerable microscopic overlap and include fibrous dysplasia, ossifying fibroma, periapical cementoosseous dysplasia, and low-grade chronic osteomyelitis. The term fibrous dysplasia is probably overused in general practice and should be reserved for the rare lesion that presents as a large, expansile, diffuse opacity of children and young adults. The need to use clinicopathologic correlation in assessing these lesions is of particular importance. Central giant cell granuloma is a relatively common jaw lesion of young adults that has an unpredictable behavior. Microscopic diagnosis is relatively straightforward; however, this lesion continues to be somewhat controversial because of its disputed classification (reactive versus neoplastic) and because of its management (surgical versus. medical). Its relationship to giant cell tumor of long bone remains undetermined.
Hypothesizing that loss of basal cells in oral lichen planus is due to apoptosis, we evaluated LP specimens for apoptosis-regulating proteins [positive regulators Bcl-xS, Bax, Fas/Fas-ligand, p53, and negative regulators (anti-apoptotic) Bcl-2, Bcl-xL and compared results with reactions in normal mucosa and chronically inflamed gingiva. Also, sections were evaluated with an in situ TUNEL assay that identifies apoptotic DNA fragments. Basal keratinocytes in normal buccal mucosa, nonspecific gingivitis, and LP were negative for Bcl-2 protein, but melanocytes and lymphoid cells were positive. Keratinocyte staining for Bcl-x was negative to weak in normal buccal mucosa and gingivitis, and moderate in LP. Keratinocytes (especially upper prickle cells) in all tissues stained similarly for Bax at weak to moderate levels. Also, no differences in Fas and Fas-ligand staining were evident. Prominent p53-positive staining was seen in all LP biopsies (10-100% of basal keratinocytes) but not in normal buccal mucosa and gingivitis. Few basal keratinocytes in 5/10 LP cases exhibited a positive in situ signal for DNA fragment-associated apoptosis. That the Bcl-2 family of proteins and Fas/Fas-ligand were detected in normal and diseased tissues, and were occasionally expressed differently in oral LP, supports the notion that apoptosis is a potential mechanism of keratinocyte loss, especially in LP. The pattern of p53 staining in oral LP suggests over-expression of wild-type protein; a phenomenon that would arrest the cell cycle to allow repair of damaged DNA, or trigger apoptosis. While immunohistochemical evidence for apoptosis-associated basal keratinocyte death in LP was slight, it appeared that it may be p53 protein, and possibly Bcl-x associated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.