Mammalian sleep can be subdivided into two distinct brain states, rapid eye movement sleep (REMs) and non-REM sleep (NREMs). Each state is characterized by distinct brain rhythms ranging from millisecond to minute-long (infraslow) oscillations. The mechanisms controlling transitions between sleep states and how they are synchronized with infraslow brain rhythms remain poorly understood. Here, we show that GABAergic neurons in the dorsomedial medulla (dmM) promote the initiation and maintenance of REMs, in part through their projections to the dorsal and median raphe nuclei. Calcium imaging using fiber photometry demonstrated that dmM GABAergic neurons are strongly activated during REMs. During NREMs, their activity fluctuated in close synchrony with infraslow oscillations in the sigma power of the electroencephalogram (EEG). Together, these findings functionally and anatomically delineate a specific population of medullary neurons that powerfully control REMs. The slow oscillations in the activity of the dmM neurons may serve as a physiological link coordinating transitions from NREMs to REMs with infraslow brain rhythms.
Introduction The neural circuits controlling rapid eye movement (REM) sleep, and in particular the role of the medulla in regulating this brain state, remains an active area of study. Previous electrophysiological recordings in the dorsomedial medulla (DM) and electrical stimulation experiments suggested an important role of this area in the control of REM sleep. However the identity of the involved neurons and their precise role in REM sleep regulation are still unclear. Methods The properties of DM GAD2 neurons in mice were investigated through stereotaxic injection of CRE-dependent viruses in conjunction with implantation of electrodes for electroencephalogram (EEG) and electromyogram (EMG) recordings and optic fibers. Experiments included in vivo calcium imaging (fiber photometry) across sleep and wake states, optogenetic stimulation of cell bodies, chemogenetic excitation and suppression (DREADDs), and connectivity mapping using viral tracing and optogenetics. Results Imaging the calcium activity of DM GAD2 neurons in vivo indicates that these neurons are most active during REM sleep. Optogenetic stimulation of DM GAD2 neurons reliably triggered transitions into REM sleep from NREM sleep. Consistent with this, chemogenetic activation of DM GAD2 neurons increased the amount of REM sleep while inhibition suppressed its occurrence and enhanced NREM sleep. Anatomical tracing revealed that DM GAD2 neurons project to several areas involved in sleep / wake regulation including the wake-promoting locus coeruleus (LC) and the REM sleep-suppressing ventrolateral periaquaductal gray (vlPAG). Optogenetic activation of axonal projections from DM to LC, and DM to vlPAG was sufficient to induce REM sleep. Conclusion These experiments demonstrate that DM inhibitory neurons expressing GAD2 powerfully promote initiation of REM sleep in mice. These findings further characterize the dorsomedial medulla as a critical structure involved in REM sleep regulation and inform future investigations of the REM sleep circuitry. Support R01 HL149133
Introduction Locus coeruleus (LC) is a noradrenergic nucleus in the brainstem involved in the regulation of attention, arousal, mood and sensory gating. LC projects to multiple brain regions and recent development of novel systems neuroscience tools allows the dissection of projection-specific LC function in more detail. One of the regions with noradrenergic projection is the preoptic area of the hypothalamus (POA). POA has been shown to contain neurons that are important for regulating sleep, and we have examined the function of the LC projection to the POA in sleep and arousal. Methods We used optogenetics, chemogenetics, fiber photometry and in vivo electrophysiology to study the function of LC noradrenergic projection to the POA. Results Norepinephrine release in the POA fluctuates with brain state changes indicating that the LC to POA projection may be involved in regulating sleep and arousal. Optogenetic stimulation of LC fibers in the POA promotes wakefulness. Furthermore, optogenetic stimulation of the LC fibers in the POA modulates the activity of sleep- and wake-active neurons. Conclusion We have identified the role of the LC noradrenergic projection to the POA in the regulation of brain states. Stimulation of the LC fibers in the POA promotes wakefulness and modulates the activity dynamics of sleep- and wake-active neurons in the POA. Our results provide more detailed information about the role of this specific projection, which has been known to exist for a long time, but with insufficient in vivo evidence of its precise function. Support Sigrid Juselius foundation, Alfred P. Sloan Research Fellowship in Neuroscience, The Whitehall foundation grant, McCabe Fund Award, NARSAD Young Investigator Award.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.