An electroosmotic flow (EOF)-based pump, integrated with a sol-gel stationary phase located in the electric field-free region of a microchip, enabled the separation of six nitroaromatic and nitramine explosives and their degradation products via liquid chromatography (LC). The integrated pump and LC system were fabricated within a single quartz substrate. The pump region consisted of a straight channel (3.0 cm x 230 microm x 100 microm) packed with 5-microm porous silica beads. The sol-gel stationary phase was derived from a precursor mixture of methyltrimethoxy- and phenethyltrimethoxysilanes and was synthesized in the downstream, field-free region of the microchip, resulting in a stationary-phase monolith with dimensions of 2.6 cm x 230 microm x 100 microm. Fluid dynamic design considerations are discussed, especially as they relate to integrating the EOF pump with the LC system. Pump and separation performance, as characterized by flow rate measurements, injection, elution, separation, and detection, point to a viable analytical chemistry platform that encompasses all of the benefits expected of portable, laboratory-on-chip systems, including reduced sample requirements and small packaging.
The ability to separate complex mixtures of analytes has made capillary electrophoresis (CE) a powerful analytical tool since its modern configuration was first introduced over 25 years ago. The technique found new utility with its application to the microfluidics based lab-on-a-chip platform (i.e., microchip), which resulted in ever smaller footprints, sample volumes, and analysis times. These features, coupled with the technique's potential for portability, have prompted recent interest in the development of novel analyzers for chemical and biological threat agents. This article will comment on three main areas of microchip CE as applied to the separation and detection of threat agents: detection techniques and their corresponding limits of detection, sampling protocol and preparation time, and system portability. These three areas typify the broad utility of lab-on-a-chip for meeting critical, present-day security, in addition to illustrating areas wherein advances are necessary.
An experimental investigation of a two-phase pipe flow was undertaken to study kinematic and dynamic parameters of the fluid and solid phases. To accomplish this, a two-color digital particle image velocimetry and accelerometry (DPIV∕DPIA) methodology was used to measure velocity and acceleration fields of the fluid phase and solid phase simultaneously. The simultaneous, two-color DPIV∕DPIA measurements provided information on the changing characteristics of two-phase flow kinematic and dynamic quantities. Analysis of kinematic terms indicated that turbulence was suppressed due to the presence of the solid phase. Dynamic considerations focused on the second and third central moments of temporal acceleration for both phases. For the condition studied, the distribution across the tube of the second central moment of acceleration indicated a higher value for the solid phase than the fluid phase; both phases had increased values near the wall. The third central moment statistic of acceleration showed a variation between the two phases with the fluid phase having an oscillatory-type profile across the tube and the solid phase having a fairly flat profile. The differences in second and third central moment profiles between the two phases are attributed to the inertia of each particle type and its response to turbulence structures. Analysis of acceleration statistics provides another approach to characterize flow fields and gives some insight into the flow structures, even for steady flows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.