A density-dependent matrix model was developed for Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) western hemlock (Tsuga heterophylla (Raf.) Sarg.) forest stands in the Pacific Northwest of the United States. The model predicted the number and volume of trees for 4 species groups and 19 diameter classes. The parameters were based on species-dependent equations linking individual tree growth, mortality, and stand recruitment to tree and stand characteristics, including stand diversity in terms of tree species and size. The equations were estimated with individual tree and stand data from 2706 permanent plots in western Washington and Oregon, largely from private and state lands, measured twice at an average interval of 10 years. Other things being equal, diameter growth increased slightly with species diversity and decreased with size diversity. Recruitment increased with species diversity and decreased with size diversity. Mortality was independent of species diversity and tended to increase with size diversity. There was practically no relationship between individual tree volume and species or size diversity. The number of trees predicted by the model over the interval between successive inventories was generally unbiased. Long-term predictions with different initial conditions were consistent with standard yield tables and compared favorably with those of the Forest Vegetation Simulator. The model also implied that, independently of its initial condition, an undisturbed stand would eventually reach a steady state dominated by western hemlock more than 1 m in diameter, with few trees of other species and size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.