Background Worldwide, the cultivated potato, Solanum tuberosum L., is the No. 1 vegetable crop and a critical food security crop. The genome sequence of DM1–3 516 R44, a doubled monoploid clone of S. tuberosum Group Phureja, was published in 2011 using a whole-genome shotgun sequencing approach with short-read sequence data. Current advanced sequencing technologies now permit generation of near-complete, high-quality chromosome-scale genome assemblies at minimal cost. Findings Here, we present an updated version of the DM1–3 516 R44 genome sequence (v6.1) using Oxford Nanopore Technologies long reads coupled with proximity-by-ligation scaffolding (Hi-C), yielding a chromosome-scale assembly. The new (v6.1) assembly represents 741.6 Mb of sequence (87.8%) of the estimated 844 Mb genome, of which 741.5 Mb is non-gapped with 731.2 Mb anchored to the 12 chromosomes. Use of Oxford Nanopore Technologies full-length complementary DNA sequencing enabled annotation of 32,917 high-confidence protein-coding genes encoding 44,851 gene models that had a significantly improved representation of conserved orthologs compared with the previous annotation. The new assembly has improved contiguity with a 595-fold increase in N50 contig size, 99% reduction in the number of contigs, a 44-fold increase in N50 scaffold size, and an LTR Assembly Index score of 13.56, placing it in the category of reference genome quality. The improved assembly also permitted annotation of the centromeres via alignment to sequencing reads derived from CENH3 nucleosomes. Conclusions Access to advanced sequencing technologies and improved software permitted generation of a high-quality, long-read, chromosome-scale assembly and improved annotation dataset for the reference genotype of potato that will facilitate research aimed at improving agronomic traits and understanding genome evolution.
Studying proteins through the lens of evolution can help identify conserved features and lineage-specific variants, and potentially, their functions. MolEvolvR (http://jravilab.org/molevolvr) is a web-app that enables researchers to run a general-purpose computational workflow for characterizing the molecular evolution and phylogeny of their proteins of interest. The web-app accepts input in multiple formats: protein/domain sequences, homologous proteins, or domain scans. MolEvolvR returns detailed homolog data, along with dynamic graphical summaries, e.g., MSA, phylogenetic trees, domain architectures, domain proximity networks, phyletic spreads, and co-occurrence patterns across lineages. Thus, MolEvolvR provides a powerful, easy-to-use interface for computational protein characterization.
Despite the fundamental importance of DNA replication for life, this process remains understudied in bacteria outside Escherichia coli and Bacillus subtilis . In particular, most bacteria do not encode the helicase-loading proteins that are essential in E. coli and B. subtilis for DNA replication.
A fundamental requirement for life is replication of an organism's DNA. Studies in Escherichia coli and Bacillus subtilis have set the paradigm for how DNA replication occurs in bacteria. During replication initiation in E. coli and B. subtilis, the replicative helicase is loaded onto the DNA at the origin of replication by an ATPase helicase loader. However, most bacteria do not encode homologs to the helicase loaders in E. coli and B. subtilis, raising the question of how helicase activity is facilitated in other bacteria during DNA replication initiation. Recent work has identified the DciA protein as a predicted helicase operator that may perform a function analogous to the helicase loaders in E. coli and B. subtilis. DciA proteins are defined by the presence of a DUF721 domain and are conserved in most bacteria. However, we find that the sequence conservation between DciA proteins across different phyla is very low. Therefore, to comprehensively define the DciA protein family, we took a computational evolutionary approach. These analyses identified diversity in sequence features and domain architectures amongst DciA homologs that were associated with specific phylogenetic lineages. The diversity of DciA proteins elucidated here represents the evolution of helicase operation in bacterial DNA replication, highlights the need for phyla-specific analyses of this fundamental biological process, and is an important example of how research in bacterial DNA replication is necessary in organisms beyond E. coli and B. subtilis.
Listeria monocytogenes (Lm) is a bacterial pathogen that causes listeriosis in immunocompromised individuals, particularly pregnant women. Several virulence factors support the intracellular lifecycle of Lm and facilitate cell-to-cell spread, allowing it to occupy multiple niches within the host and cross protective barriers, including the placenta. One family of virulence factors, internalins, contributes to Lm pathogenicity by inducing specific uptake and conferring tissue tropism. Over 25 internalins have been identified thus far, but only a few have been extensively studied. Internalins contain leucine-rich repeat (LRR) domains which enable protein-protein interactions, allowing Lm to bind host proteins. Notably, other Listeria species express internalins but cannot colonize human hosts, prompting questions regarding the evolution of internalins within the genus Listeria. Internalin P (InlP) promotes placental colonization through interaction with the host protein afadin. Though prior studies of InlP have begun to elucidate its role in Lm pathogenesis, there remains a lack of information regarding homologs in other Listeria species. Here, we have used a computational evolutionary approach to identify InlP homologs in additional Listeria species. We found that L. ivanovii londoniensis (Liv) and L. seeligeri (Ls) encode InlP homologs. We also found InlP-like homologs in L. innocua and the recently identified species L. costaricensis. All newly identified homologs lack the full-length LRR6 and LRR7 domains found in Lm InlP. These findings inform on the evolution of one key Lm virulence factor, InlP, and serve as a springboard for future evolutionary studies of Lm pathogenesis as well as mechanistic studies of Listeria internalins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.