Background Streptococcus pneumoniae is one of the leading causes of community acquired pneumonia and acute otitis media. Certain aspects of S. pneumoniae’s virulence are dependent upon expression and release of the protein toxin pneumolysin (PLY) and upon the activity of the peroxide-producing enzyme, pyruvate oxidase (SpxB). We investigated the possible synergy of these two proteins and identified that release of PLY is enhanced by expression of SpxB prior to stationary phase growth.ResultsMutants lacking the spxB gene were defective in PLY release and complementation of spxB restored PLY release. This was demonstrated by cytotoxic effects of sterile filtered supernatants upon epithelial cells and red blood cells. Additionally, peroxide production appeared to contribute to the mechanism of PLY release since a significant correlation was found between peroxide production and PLY release among a panel of clinical isolates. Exogenous addition of H2O2 failed to induce PLY release and catalase supplementation prevented PLY release in some strains, indicating peroxide may exert its effect intracellularly or in a strain-dependent manner. SpxB expression did not trigger bacterial cell death or LytA-dependent autolysis, but did predispose cells to deoxycholate lysis.ConclusionsHere we demonstrate a novel link between spxB expression and PLY release. These findings link liberation of PLY toxin to oxygen availability and pneumococcal metabolism.Electronic supplementary materialThe online version of this article (doi:10.1186/s12866-016-0881-6) contains supplementary material, which is available to authorized users.
Summary Peptidoglycan (PG) is a highly cross‐linked polysaccharide that encases bacteria, resists the effects of turgor and confers cell shape. PG precursors are translocated across the cytoplasmic membrane by the lipid carrier undecaprenyl phosphate (Und‐P) where they are incorporated into the PG superstructure. Previously, we found that one of our Escherichia coli laboratory strains (CS109) harbors a missense mutation in uppS, which encodes an enzymatically defective Und‐P(P) synthase. Here, we show that CS109 cells lacking the bifunctional aPBP PBP1B (penicillin binding protein 1B) lyse during exponential growth at elevated temperature. PBP1B lysis was reversed by: (i) reintroducing wild‐type uppS, (ii) increasing the availability of PG precursors or (iii) overproducing PBP1A, a related bifunctional PG synthase. In addition, inhibiting the catalytic activity of PBP2 or PBP3, two monofunctional bPBPs, caused CS109 cells to lyse. Limiting the precursors required for Und‐P synthesis in MG1655, which harbors a wild‐type allele of uppS, also promoted lysis in mutants lacking PBP1B or bPBP activity. Thus, simultaneous inhibition of Und‐P production and PG synthases provokes a synergistic response that leads to cell lysis. These findings suggest a biological connection that could be exploited in combination therapies.
Undecaprenyl phosphate (Und-P) is an essential lipid carrier that ferries cell wall intermediates across the cytoplasmic membrane in bacteria. Und-P is generated by dephosphorylating undecaprenyl diphosphate (Und-PP). In Escherichia coli, BacA, PgpB, YbjG, and LpxT dephosphorylate Und-PP and are conditionally essential. To identify vulnerabilities that arise when Und-P metabolism is defective, we developed a genetic screen for synthetic mutations in combination with ΔybjG ΔlpxT ΔbacA. The screen uncovered system-wide connections, including novel connections to cell division, DNA replication and repair, signal transduction, and glutathione metabolism. Further analysis revealed several new morphogenes; loss of one of these, qseC, caused cells to enlarge and lyse. QseC is the sensor kinase component of the QseBC two-component system. In the absence of QseC, the QseB response regulator is overactivated by PmrB cross-phosphorylation. Here, we show that deleting qseB completely reverses the shape defect of ΔqseC cells, as does overexpressing rprA (a small RNA). Surprisingly, deleting pmrB only partially suppressed qseC-related shape defects. Thus, QseB is activated by multiple factors in the absence of QseC and functions ascribed to QseBC may be related to cell wall defects. Altogether, our findings provide a framework for identifying new determinants of cell integrity that could be targeted in future therapies.
Most glycan layers that surround and protect bacteria are assembled from monomers linked to a polyisoprene lipid carrier (Manat et al., 2014); for the majority of bacteria, this is undecaprenyl phosphate (Und-P), a 55-carbon isoprene commonly referred to as bactoprenol. Und-P is essential by virtue of its requirement to synthesize a stress-bearing structure known as the peptidoglycan (PG) sacculus
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.