Analytical models of the penetration process focus on estimating depth of penetration based on target density, target strength (sometimes associated with the unconfined compressive strength of the target for geological targets), the areal density of the penetrator (W/A), and the impact velocity. In this paper, an expression for work is used in conjunction with thermodynamic considerations to devise a simple estimate for mass lost by a high velocity projectile during the penetration process. The result shows that the mass loss is directly proportional to the tunnel length and the target shear strength. The constant of proportionality is not easy to deduce, however, in that it contains an unusual factor from the work analysis. A method for estimating target shear under high pressure from penetration experiments is introduced.
In this paper a one-dimensional analysis is presented that leads to the appropriate equation of motion for the undeformed portion of a plastic, rigid rod after impact with a rigid anvil. This equation is used as a basis for deducing material properties of the rod material from post-test measurements.
In this paper, a simple theoretical analysis of an old problem is presented. The analysis is more complete than earlier versions, but retains the mathematical simplicity of the earlier versions. The major thrust is to separate the material response into two phases. The first phase is dominated by strain rate effects and has a variable plastic wave speed. The second phase is dominated by strain hardening effects and has a constant plastic wave speed. Estimates for dynamic yield stress, strain, strainrate, and plastic wave speed during both phases are given. Comparisons with several experiments on OFHC copper are included.
A high-speed photographic film record of a Taylor impact experiment was analysed to determine the strain, strain rate and stress. The stress was calculated on the basis of an interpretive analysis by Taylor involving the motion of a plastic wave in the material. The data on drawn OFE copper produced stresses from 300 to 400 MPa, for strains between 0 and 45 per cent. The strain rate approximation produced a peak value of 11 000 s À1 . The strain rate data showed a wide range of values in the plastically deforming region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.