Observations and recent high-resolution numerical model simulations indicate that liquid water and partially frozen hydrometeors can be lofted considerably above the environmental 0°C level in the updrafts of convective storms owing to the warm thermal perturbation from latent heating within the updraft and to the noninstantaneous nature of drop freezing. Consequently, upward extensions of positive differential reflectivity (i.e., ZDR ≥ 1 dB)—called ZDR columns—may be a useful proxy for detecting the initiation of new convective storms and examining the evolution of convective storm updrafts. High-resolution numerical simulations with spectral bin microphysics and a polarimetric forward operator reveal a strong spatial association between updrafts and ZDR columns and show the utility of examining the structure and evolution of ZDR columns for assessing updraft evolution. This paper introduces an automated ZDR column algorithm designed to provide additional diagnostic and prognostic information pertinent to convective storm nowcasting. Although suboptimal vertical resolution above the 0°C level and limitations imposed by commonly used scanning strategies in the operational WSR-88D network can complicate ZDR column detection, examples provided herein show that the algorithm can provide operational and research-focused meteorologists with valuable information about the evolution of convective storms.
Previous work with observations from the NEXRAD (WSR-88D) network in the United States has shown that the probability of damage from a tornado, as represented by EF-scale ratings, increases as low-level rotational velocity increases. This work expands on previous studies by including reported tornadoes from 2014 to 2015, as well as a robust sample of nontornadic severe thunderstorms [≥1-in.- (2.54 cm) diameter hail, thunderstorm wind gusts ≥ 50 kt (25 m s−1), or reported wind damage] with low-level cyclonic rotation. The addition of the nontornadic sample allows the computation of tornado damage rating probabilities across a spectrum of organized severe thunderstorms represented by right-moving supercells and quasi-linear convective systems. Dual-polarization variables are used to ensure proper use of velocity data in the identification of tornadic and nontornadic cases. Tornado damage rating probabilities increase as low-level rotational velocity Vrot increases and circulation diameter decreases. The influence of height above radar level (or range from radar) is less obvious, with a muted tendency for tornado damage rating probabilities to increase as rotation (of the same Vrot magnitude) is observed closer to the ground. Consistent with previous work on gate-to-gate shear signatures such as the tornadic vortex signature, easily identifiable rotation poses a greater tornado risk compared to more nebulous areas of cyclonic azimuthal shear. Additionally, tornado probability distributions vary substantially (for similar sample sizes) when comparing the southeast United States, which has a high density of damage indicators, to the Great Plains, where damage indicators are more sparse.
A comparative analysis of a supercell hailstorm using simultaneous observations with S-band and C-band polarimetric radars supported by abundant ground-truth reports is presented in this study. The storm occurred on 16 May 2010 and produced a swath of extremely damaging hail across a large portion of the Oklahoma City, Oklahoma, metro area. Hail sizes over 10 cm in diameter and hail drifts upward of 1.5 m in height were reported. Both S-band (KOUN) and C-band [University of Oklahoma Polarimetric Radar for Innovations in Meteorology and Engineering (OU-PRIME)] polarimetric radars in Norman, Oklahoma, sampled the storm at ranges less than 60 km, so that high-resolution dual-wavelength polarimetric data were obtained. At C band, this analysis mostly presents raw Z and Z DR (due to problems with differential phase resulting from an incorrect censoring threshold in the examined case) while taking into account the possibility of attenuation in the interpretation of these data. Among the issues investigated in the study are the relation of hail size measured at the surface to the polarimetric signatures at both wavelengths, the difference between polarimetric signatures at the two wavelengths of hail aloft and near the surface (where melting hail is mixed with rain), and the three-body scatter spike (TBSS) signature associated with large hail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.