A long-debated question concerns the fate of archaic forms of the genus Homo: did they go extinct without interbreeding with anatomically modern humans, or are their genes present in contemporary populations? This question is typically focused on the genetic contribution of archaic forms outside of Africa. Here we use DNA sequence data gathered from 61 noncoding autosomal regions in a sample of three sub-Saharan African populations (Mandenka, Biaka, and San) to test models of African archaic admixture. We use two complementary approximate-likelihood approaches and a model of human evolution that involves recent population structure, with and without gene flow from an archaic population. Extensive simulation results reject the null model of no admixture and allow us to infer that contemporary African populations contain a small proportion of genetic material (z2%) that introgressed z35 kya from an archaic population that split from the ancestors of anatomically modern humans z700 kya. Three candidate regions showing deep haplotype divergence, unusual patterns of linkage disequilibrium, and small basal clade size are identified and the distributions of introgressive haplotypes surveyed in a sample of populations from across sub-Saharan Africa. One candidate locus with an unusual segment of DNA that extends for >31 kb on chromosome 4 seems to have introgressed into modern Africans from a now-extinct taxon that may have lived in central Africa. Taken together our results suggest that polymorphisms present in extant populations introgressed via relatively recent interbreeding with hominin forms that diverged from the ancestors of modern humans in the Lower-Middle Pleistocene.H. sapiens | hybridization I t is now well accepted that anatomically modern humans (AMH) originated in Africa and eventually dispersed to all inhabited parts of the world. What is not known is the extent to which the ancestral population that gave rise to AMH was genetically isolated, and whether archaic hominins made a genetic contribution to the modern human gene pool. Answering these questions has important implications for understanding the way in which adaptations associated with modern traits were assembled in the human genome: do the genes of AMH descend exclusively from a single isolated population, or do our genes descend from divergent ancestors that occupied different ecological niches over a wider geographical range across and outside of the African Pleistocene landscape?The introgression debate is typically framed in terms of interbreeding between AMH and Neandertals in Europe or other archaic forms in Asia. The opportunity for such hybridizations may have existed between 90 and 30 kya, after early modern humans dispersed from Africa and before archaic forms went extinct in Eurasia (1-5). Recent genome-level analyses of ancient DNA suggest that a small amount of gene flow did occur from Neandertals into the ancestors of non-Africans sometime after AMH left Africa (6) and that an archaic "Denisovan" population contributed genetic mat...
The ratio of X-linked to autosomal diversity was estimated from an analysis of six human genome sequences and found to deviate from the expected value of 0.75. However, the direction of this deviation depends on whether a particular sequence is close to or far from the nearest gene. This pattern may be explained by stronger locally acting selection on X-linked genes compared with autosomal genes, combined with larger effective population sizes for females than for males.
Signals of archaic admixture have been identified through comparisons of the draft Neanderthal and Denisova genomes with those of living humans. Studies of individual loci contributing to these genome-wide average signals are required for characterization of the introgression process and investigation of whether archaic variants conferred an adaptive advantage to the ancestors of contemporary human populations. However, no definitive case of adaptive introgression has yet been described. Here we provide a DNA sequence analysis of the innate immune gene STAT2 and show that a haplotype carried by many Eurasians (but not sub-Saharan Africans) has a sequence that closely matches that of the Neanderthal STAT2. This haplotype, referred to as N, was discovered through a resequencing survey of the entire coding region of STAT2 in a global sample of 90 individuals. Analyses of publicly available complete genome sequence data show that haplotype N shares a recent common ancestor with the Neanderthal sequence (~80 thousand years ago) and is found throughout Eurasia at an average frequency of ~5%. Interestingly, N is found in Melanesian populations at ~10-fold higher frequency (~54%) than in Eurasian populations. A neutrality test that controls for demography rejects the hypothesis that a variant of N rose to high frequency in Melanesia by genetic drift alone. Although we are not able to pinpoint the precise target of positive selection, we identify nonsynonymous mutations in ERBB3, ESYT1, and STAT2-all of which are part of the same 250 kb introgressive haplotype-as good candidates.
Sub-Saharan Africa has consistently been shown to be the most genetically diverse region in the world. Despite the fact that a substantial portion of this variation is partitioned between groups practicing a variety of subsistence strategies and speaking diverse languages, there is currently no consensus on the genetic relationships of sub-Saharan African populations. San (a subgroup of KhoeSan) and many Pygmy groups maintain hunter-gatherer lifestyles and cluster together in autosomal-based analysis, whereas non-Pygmy Niger-Kordofanian speakers (non-Pygmy NKs) predominantly practice agriculture and show substantial genetic homogeneity despite their wide geographic range throughout sub-Saharan Africa. However, KhoeSan, who speak a set of relatively unique click-based languages, have long been thought to be an early branch of anatomically modern humans based on phylogenetic analysis. To formally test models of divergence among the ancestors of modern African populations, we resequenced a sample of San, Eastern, and Western Pygmies and non-Pygmy NKs individuals at 40 nongenic (∼2 kb) regions and then analyzed these data within an Approximate Bayesian Computation (ABC) framework. We find substantial support for a model of an early divergence of KhoeSan ancestors from a proto-Pygmy-non-Pygmy NKs group ∼110 thousand years ago over a model incorporating a proto-KhoeSan-Pygmy hunter-gatherer divergence from the ancestors of non-Pygmy NKs. The results of our analyses are consistent with previously identified signals of a strong bottleneck in Mbuti Pygmies and a relatively recent expansion of non-Pygmy NKs. We also develop a number of methodologies that utilize "pseudo-observed" data sets to optimize our ABC-based inference. This approach is likely to prove to be an invaluable tool for demographic inference using genome-wide resequencing data.
The swimming motions of cells within Bacillus subtiliscolonies, as well as the associated fluid flows, were analyzed from video films produced during colony growth and expansion on wet agar surfaces. Individual cells in very wet dense populations moved at rates between 76 and 116 μm/s. Swimming cells were organized into patterns of whirls, each approximately 1,000 μm2, and jets of about 95 by 12 μm. Whirls and jets were short-lived, lasting only about 0.25 s. Patterns within given areas constantly repeated with a periodicity of approximately 1 s. Whirls of a given direction became disorganized and then re-formed, usually into whirls moving in the opposite direction. Pattern elements were also organized with respect to one another in the colony. Neighboring whirls usually turned in opposite directions. This correlation decreased as a function of distance between whirls. Fluid flows associated with whirls and jets were measured by observing the movement of marker latex spheres added to colonies. The average velocity of markers traveling in whirls was 19 μm/s, whereas those traveling in jets moved at 27 μm/s. The paths followed by markers were aligned with the direction of cell motion, suggesting that cells create flows moving with them into whirls and along jets. When colonies became dry, swimming motions ceased except in regions close to the periphery and in isolated islands where cells traveled in slow whirls at about 4 μm/s. The addition of water resulted in immediate though transient rapid swimming (> 80 μm/s) in characteristic whirl and jet patterns. The rate of swimming decreased to 13 μm/s within 2 min, however, as the water diffused into the agar. Organized swimming patterns were nevertheless preserved throughout this period. These findings show that cell swimming in colonies is highly organized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.