The current EVD outbreak in the DRC has clinical and epidemiologic characteristics that are similar to those of previous EVD outbreaks in equatorial Africa. The causal agent is a local EBOV variant, and this outbreak has a zoonotic origin different from that in the 2014 epidemic in West Africa. (Funded by the Centre International de Recherches Médicales de Franceville and others.).
The spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been unprecedented in its speed and effects. Interruption of its transmission to prevent widespread community transmission is critical because its effects go beyond the number of COVID-19 cases and deaths and affect the health system capacity to provide other essential services. Highlighting the implications of such a situation, the predictions presented here are derived using a Markov chain model, with the transition states and country specific probabilities derived based on currently available knowledge. A risk of exposure, and vulnerability index are used to make the probabilities country specific. The results predict a high risk of exposure in states of small size, together with Algeria, South Africa and Cameroon. Nigeria will have the largest number of infections, followed by Algeria and South Africa. Mauritania would have the fewest cases, followed by Seychelles and Eritrea. Per capita, Mauritius, Seychelles and Equatorial Guinea would have the highest proportion of their population affected, while Niger, Mauritania and Chad would have the lowest. Of the World Health Organization's 1 billion population in Africa, 22% (16%–26%) will be infected in the first year, with 37 (29 – 44) million symptomatic cases and 150 078 (82 735–189 579) deaths. There will be an estimated 4.6 (3.6–5.5) million COVID-19 hospitalisations, of which 139 521 (81 876–167 044) would be severe cases requiring oxygen, and 89 043 (52 253–106 599) critical cases requiring breathing support. The needed mitigation measures would significantly strain health system capacities, particularly for secondary and tertiary services, while many cases may pass undetected in primary care facilities due to weak diagnostic capacity and non-specific symptoms. The effect of avoiding widespread and sustained community transmission of SARS-CoV-2 is significant, and most likely outweighs any costs of preventing such a scenario. Effective containment measures should be promoted in all countries to best manage the COVID-19 pandemic.
The move towards universal health coverage is premised on having well-functioning health systems, which can assure provision of the essential health and related services people need. Efforts to define ways to assess functionality of health systems have however varied, with many not translating into concrete policy action and influence on system development. We present an approach to provide countries with information on the functionality of their systems in a manner that will facilitate movement towards universal health coverage. We conceptualise functionality of a health system as being a construct of four capacities: access to, quality of, demand for essential services and its resilience to external shocks. We test and confirm the validity of these capacities as appropriate measures of system functionality. We thus provide results for functionality of the 47 countries of the WHO African Region based on this. The functionality of health systems ranges from 34.4 to 75.8 on a 0–100 scale. Access to essential services represents the lowest capacity in most countries of the region, specifically due to poor physical access to services. Funding levels from public and out-of-pocket sources represent the strongest predictors of system functionality, compared with other sources. By focusing on the assessment on the capacities that define system functionality, each country has concrete information on where it needs to focus, in order to improve the functionality of its health system to enable it respond to current needs including achieving universal health coverage, while responding to shocks from challenges such as the 2019 coronavirus disease. This systematic and replicable approach for assessing health system functionality can provide the guidance needed for investing in country health systems to attain universal health coverage goals.
Countries of the World Health Organization (WHO) African Region have experienced a wide range of coronavirus disease 2019 (COVID-19) epidemics. This study aimed to identify predictors of the timing of the first COVID-19 case and the per capita mortality in WHO African Region countries during the first and second pandemic waves and to test for associations with the preparedness of health systems and government pandemic responses. Using a region-wide, country-based observational study, we found that the first case was detected earlier in countries with more urban populations, higher international connectivity and greater COVID-19 test capacity but later in island nations. Predictors of a high first wave per capita mortality rate included a more urban population, higher pre-pandemic international connectivity and a higher prevalence of HIV. Countries rated as better prepared and having more resilient health systems were worst affected by the disease, the imposition of restrictions or both, making any benefit of more stringent countermeasures difficult to detect. Predictors for the second wave were similar to the first. Second wave per capita mortality could be predicted from that of the first wave. The COVID-19 pandemic highlights unanticipated vulnerabilities to infectious disease in Africa that should be taken into account in future pandemic preparedness planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.