Model M15 gasoline fuels have been created from pure fuel components, to give independent control of volatility, the heavy end content and the aromatic content, in order to understand the effect of the fuel properties on Gasoline Direct Injection (GDI) fuel spray behaviour and the subsequent particulate number emissions. Each fuel was imaged at a range of fuel temperatures in a spray rig and in a motored optical engine, to cover the full range from non-flashing sprays through to flare flashing sprays. The spray axial penetration (and potential piston and liner impingement), and spray evaporation rate were extracted from the images.Firing engine tests with the fuels with the same fuel temperatures were performed and exhaust particulate number spectra captured using a DMS500 Mark II Particle Spectrometer. Data from the spray images and knowledge of the fuel evaporative performance has been used to explain some of the observed findings that might appear to be against the expected trends, but can be explained in terms of the saturation pressure ratiothe ratio of the fuel vapour pressure to the system pressure.
Fuel spray impingement on piston surfaces is a concern because it can cause particulate exhaust emissions from gasoline direct injection (GDI) engine. Transient heat transfer plays an important role that directly influences liquid film evaporation and its lifetime. In this paper, the effects of injection temperature, injection pressure, piston temperature and impact distance on n-pentane spray impingement heat transfer were fully examined. Results showed that increasing the piston temperature could increase the rate of heat transfer with a larger surface temperature reduction and a higher heat flux, which led to a shorter liquid film lifetime on the piston surface. Increasing the fuel injection temperature helped to improve atomization of the fuel spray, reduce the penetration distance and mitigate impact, which in turn led to reduced surface cooling and less liquid film on the piston surface. A decrease in impact distance and an increase in injection pressure both caused an increase in surface temperature reduction and heat flux but a decrease in the liquid film residence time. The dimensionless heat flux in terms of Biot and Fourier numbers presented a high similarity during the rapid cooling stage. A dimensionless correlation was formed to quantify this fast time-varying heat transfer behaviour.
Accurate modelling of the initial transient period of spray development is critical within diesel engines, as it impacts on the amount of vapor penetration and hence the combustion characteristics of the spray. In addition, in multiple injection schemes shorter injections will be mostly, if not totally, within the initial transient period. This paper investigates how two different commercially available computational fluid dynamics (CFD) codes (hereafter noted as Code 1 and Code 2) simulate transient diesel spray atomization, in a non-combusting environment. The case considered for comparison is a single-hole injection of n-dodecane representing the Engine Combustion Network's "Spray A" condition. It was identified that the different break-up models used by the codes (Reitz-Diwakar for Code 1, KH-RT for Code 2) had a significant impact on the transient liquid penetration. From differing initial base setups, Code 1's case was matched as closely as possible to Code 2's case. Despite the nominal equivalence between the two simulations, there existed a discrepancy in liquid length prediction throughout injection between codes. This was caused by differing implementations of the KH-RT model in both codes. Therefore, a new implementation of the KH-RT model was input into Code 1 in order to allow correct matching of the liquid length to experimental data throughout the injection period. Results from the new model are shown and compared to the previous implementation, showing an improved ability to match to experimental data.
It is known that low-temperature combustion (LTC) strategies can help simultaneously reduce nitrogen oxides (NOx) and particulate matter (PM) emissions from diesel engines to very low levels. However, it is also known that LTC may cause emissions of unburned hydrocarbons (UHC) to rise — especially in low load operating conditions. Recent studies indicate that end-of-injection (EOI) processes may support ignition recession back to injector nozzle thereby helping to reduce these emissions. This paper contributes to the physical understanding of this EOIphe-nomenon, combustion recession, using computational fluid dynamics studies at LTC conditions. Simulations are performed on a single-hole injection of n-dodecane under a range of Engine Combustion Network’s “Spray A” conditions. The primary objective of this paper is to assess the ability of a Flamelet Generated Manifold (FGM) combustion model to predict and characterize combustion recession. First, a baseline condition FGM simulation is compared with two other combustion models namely the Well Stirred model (WSR), the Representative Interactive Flamelet model (RIF) using the commercially-available CFD solver, CONVERGE. Further studies were carried out for FGM model alone including: varying ambient temperature conditions and chemical mechanisms. Two chemical kinetics mechanisms with low temperature chemistry for n-dodecane are employed to help to predict the occurrence of combustion recession. All simulations are performed under the Reynolds-Averaged Navier-Stokes (RANS) framework in a grid-converged Lagrangian spray scenario. The simulation of combustion recession is qualitatively validated against experimental data from literature and the efficacy of each model in predicting combustion recession is evaluated. Overall, it was found that the FGM model was able to capture the combustion recession phenomenon well — showing particular strength in predicting distinct auto-ignition events in the near nozzle region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.